1. 数据类型 type()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Yongqiang Cheng from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..') current_directory = os.path.dirname(os.path.abspath(__file__)) import numpy as np # import tensorflow as tf import cv2 import time print(16 * "++--") print("current_directory:", current_directory) PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR. print("Python list") print("PIXEL_MEAN:", PIXEL_MEAN) print("type(PIXEL_MEAN):", type(PIXEL_MEAN)) print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n") PIXEL_MEAN_array = np.array(PIXEL_MEAN) print("NumPy array") print("PIXEL_MEAN_array:", PIXEL_MEAN_array) print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array)) print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0])) print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype)
/usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0 ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++-- current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow Python list PIXEL_MEAN: [123.68, 116.779, 103.939] type(PIXEL_MEAN): <type 'list'> type(PIXEL_MEAN[0]): <type 'float'> NumPy array PIXEL_MEAN_array: [123.68 116.779 103.939] type(PIXEL_MEAN_array): <type 'numpy.ndarray'> type(PIXEL_MEAN_array[0]): <type 'numpy.float64'> PIXEL_MEAN_array.dtype: float64 Process finished with exit code 0
2. 数据融合 (data fusion)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Yongqiang Cheng from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..') current_directory = os.path.dirname(os.path.abspath(__file__)) import numpy as np # import tensorflow as tf import cv2 import time print(16 * "++--") print("current_directory:", current_directory) PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In TensorFlow, channel is RGB. In OpenCV, channel is BGR. print("Python list") print("PIXEL_MEAN:", PIXEL_MEAN) print("type(PIXEL_MEAN):", type(PIXEL_MEAN)) print("type(PIXEL_MEAN[0]):", type(PIXEL_MEAN[0]), "\n") PIXEL_MEAN_array = np.array(PIXEL_MEAN) print("NumPy array") print("PIXEL_MEAN_array:", PIXEL_MEAN_array) print("type(PIXEL_MEAN_array):", type(PIXEL_MEAN_array)) print("type(PIXEL_MEAN_array[0]):", type(PIXEL_MEAN_array[0])) print("PIXEL_MEAN_array.dtype:", PIXEL_MEAN_array.dtype, "\n") image_array = np.array( [[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], [[21, 22, 23], [24, 25, 26], [27, 28, 29], [30, 31, 32]]]) print("image_array:", image_array) print("type(image_array):", type(image_array)) print("type(image_array[0]):", type(image_array[0])) print("image_array.dtype:", image_array.dtype, "\n") image_array_fusion = image_array + np.array(PIXEL_MEAN) print("image_array_fusion:", image_array_fusion) print("type(image_array_fusion):", type(image_array_fusion)) print("type(image_array_fusion[0]):", type(image_array_fusion[0])) print("image_array_fusion.dtype:", image_array_fusion.dtype)
/usr/bin/python2.7 /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow/yongqiang.py --gpu=0 ++--++--++--++--++--++--++--++--++--++--++--++--++--++--++--++-- current_directory: /home/strong/tensorflow_work/R2CNN_Faster-RCNN_Tensorflow Python list PIXEL_MEAN: [123.68, 116.779, 103.939] type(PIXEL_MEAN): <type 'list'> type(PIXEL_MEAN[0]): <type 'float'> NumPy array PIXEL_MEAN_array: [123.68 116.779 103.939] type(PIXEL_MEAN_array): <type 'numpy.ndarray'> type(PIXEL_MEAN_array[0]): <type 'numpy.float64'> PIXEL_MEAN_array.dtype: float64 image_array: [[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] [[21 22 23] [24 25 26] [27 28 29] [30 31 32]]] type(image_array): <type 'numpy.ndarray'> type(image_array[0]): <type 'numpy.ndarray'> image_array.dtype: int64 image_array_fusion: [[[124.68 118.779 106.939] [127.68 121.779 109.939] [130.68 124.779 112.939] [133.68 127.779 115.939]] [[144.68 138.779 126.939] [147.68 141.779 129.939] [150.68 144.779 132.939] [153.68 147.779 135.939]]] type(image_array_fusion): <type 'numpy.ndarray'> type(image_array_fusion[0]): <type 'numpy.ndarray'> image_array_fusion.dtype: float64 Process finished with exit code 0
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python list与NumPy array 区分详解”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年05月18日
2025年05月18日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]