需要注意的是:更改完源程序.c文件,需要对整个项目重新编译、make install,对已经生成的文件进行更新,类似于之前VS中在一个类中增加新函数重新编译封装dll,而python接口的调用主要使用的是libdarknet.so文件,其余在配置文件中的修改不必重新进行编译安装。

之前训练好的模型,在模型调用的时候,总是在

lib = CDLL("/home/*****/*******/darknet/libdarknet.so", RTLD_GLOBAL)这里读不到darknet编译生成的.so文件,导致直接的报错;之前以为是文件路径的问题,稀里糊涂的;由于很久不写c文件了,所以最后直接在python接口后在py文件中修改的画框、标置信度等操作,一次次的尝试后终于成功

(1)将项目中python文件下的darknet.py文件拷贝到根目录,和/libdarknet.so在同一个目录下

(2)整个demo程序都是用绝对路径;

实现yolov3模型加载,批量读取文件夹下的照片到库函数变量,最终处理结果存入在另外新建文件夹

###2019.04.03 by ylxb
def showPicResult(image,peoplecar,outimage):
  img = cv2.imread(image)
  out_img =outimage
  cv2.imwrite(out_img, img)
  for i in range(len(peoplecar)):
    x1=peoplecar[i][2][0]-peoplecar[i][2][2]/2
    y1=peoplecar[i][2][1]-peoplecar[i][2][3]/2
    x2=peoplecar[i][2][0]+peoplecar[i][2][2]/2
    y2=peoplecar[i][2][1]+peoplecar[i][2][3]/2
    im = cv2.imread(out_img)
    cv2.rectangle(im,(int(x1),int(y1)),(int(x2),int(y2)),(255,255,0),3)
    text = listpeoplecar[i][0]
    # 在图片上添加文字信息
    if(text=="people"):
      carcol=(55, 55, 255)#颜色显示
    else:
      carcol = (255, 55, 55)
    cv2.putText(im, text, (int(x1), int(y1)), cv2.FONT_HERSHEY_SIMPLEX,
          0.8, carcol, 1, cv2.LINE_AA)
    #This is a method that works well.
    cv2.imwrite(out_img, im)
###2019.04.03 by ylxb
  filenames = os.listdir(picDir)
  i = 0
  num = 0#目标个数
  car_num = 0#car个数
  people_num = 0#people个数

  car = "car" # car元素
  people = "people" # people元素

  for name in filenames:
    filename=os.path.join(picDir,name)
    #print(filename)
    listpeoplecar = detect(net, meta, filename)
    print(listpeoplecar)
    i = i + 1
    #save_picpath = out_img+str(filename).split("/")[-1].split(".")[0] + ".png"
    out_img=out_img1+str(i)+'.png'
    showPicResult(filename,listpeoplecar,out_img)

    for item in listpeoplecar:
      #print(item)
      car_num = car_num + item[0].count(car)#car个数
      people_num = people_num + item[0].count(people)#people个数
      num = num + 1#目标个数

  print('car个数: ' + str(car_num))
  print('people个数: ' + str(people_num))
  print('共检测出目标个数: ' + str(num))
  print('共检测照片个数:'+ str(i))

放其中一个照片测试照片:

对YOLOv3模型调用时候的python接口详解

以上这篇对YOLOv3模型调用时候的python接口详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
YOLOv3,python

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“对YOLOv3模型调用时候的python接口详解”

暂无“对YOLOv3模型调用时候的python接口详解”评论...