获取数据集,并画图代码如下:
import numpy as np from sklearn.datasets import make_moons import matplotlib.pyplot as plt # 手动生成一个随机的平面点分布,并画出来 np.random.seed(0) X, y = make_moons(200, noise=0.20) plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral) plt.show()
得到图如下:
定义决策边界函数:
# 咱们先顶一个一个函数来画决策边界 def plot_decision_boundary(pred_func): # 设定最大最小值,附加一点点边缘填充 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # 用预测函数预测一下 Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # 然后画出图 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
定义分类函数,并画出决策边界图代码如下:
from sklearn.linear_model import LogisticRegressionCV #咱们先来瞄一眼逻辑斯特回归对于它的分类效果 clf = LogisticRegressionCV() clf.fit(X, y) # 画一下决策边界 plot_decision_boundary(lambda x: clf.predict(x)) plt.title("Logistic Regression") plt.show()
画图如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python 画出使用分类器得到的决策边界”评论...
更新日志
2024年11月13日
2024年11月13日
- 《忆蚀》Subliminal:揭秘后室之谜,路知行献声Weplay文化展
- 那英《征服NEWXRCD台湾版》日本压制[WAV+CUE]
- 群星《金曲百分百上》3CD(香港版)[WAV+CUE]
- 刘欢《雨中的树(新歌加精选)2CD》德国HD24K金碟[WAV+CUE]
- 郑源 《世间情歌》6N纯银SQCD[WAV+CUE][1G]
- 群星《粤潮2HQII》头版限量编号[低速原抓WAV+CUE][991M]
- 群星《2023好听新歌21》十倍音质 U盘音乐[WAV分轨][1G]
- 《热血传奇》双11感恩回馈 超值狂欢30天
- 原神5.2版本活动汇总 5.2版本活动有哪些
- 张敬轩.2010-NO.ELEVEN【环球】【WAV+CUE】
- 黄丽玲.2006-失恋无罪【艾回】【WAV+CUE】
- 阿达娃.2024-Laluna【W8VES】【FLAC分轨】
- 宝可梦大集结段位等级划分表大全 大集结段位一览
- 龙腾世纪影障守护者工坊与装备如何升级 工坊与装备升级说明
- 龙腾世纪影障守护者全成就攻略分享 龙腾世纪4全成就列表一览