由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧。

所以mark下。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

# 第一一个卷积层,我们可以看到它的权值是随机初始化的
w=torch.nn.Conv2d(2,2,3,padding=1)
print(w.weight)


# 第一种方法
print("1.使用另一个Conv层的权值")
q=torch.nn.Conv2d(2,2,3,padding=1) # 假设q代表一个训练好的卷积层
print(q.weight) # 可以看到q的权重和w是不同的
w.weight=q.weight # 把一个Conv层的权重赋值给另一个Conv层
print(w.weight)

# 第二种方法
print("2.使用来自Tensor的权值")
ones=torch.Tensor(np.ones([2,2,3,3])) # 先创建一个自定义权值的Tensor,这里为了方便将所有权值设为1
w.weight=torch.nn.Parameter(ones) # 把Tensor的值作为权值赋值给Conv层,这里需要先转为torch.nn.Parameter类型,否则将报错
print(w.weight)

效果预览

Pytorch卷积层手动初始化权值的实例

以上这篇Pytorch卷积层手动初始化权值的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Pytorch,卷积层,初始化,权值

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“Pytorch卷积层手动初始化权值的实例”

暂无“Pytorch卷积层手动初始化权值的实例”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。