一般常用的有两个方法:
1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。
2、使用rename方法(推荐):
DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None )
参数介绍:
- mapper,index,columns:可以任选其一使用,可以是将index和columns结合使用。index和column直接传入mapper或者字典的形式。
- axis:int或str,与mapper配合使用。可以是轴名称(‘index',‘columns')或数字(0,1)。默认为'index'。
- copy:boolean,默认为True,是否复制基础数据。
- inplace:布尔值,默认为False,是否返回新的DataFrame。如果为True,则忽略复制值。
import numpy as np import pandas as pd from pandas import Series, DataFrame df1 = DataFrame(np.arange(9).reshape(3, 3), index = ['bj', 'sh', 'gz'], columns=['a', 'b', 'c']) print(df1) ''' a b c bj 0 1 2 sh 3 4 5 gz 6 7 8 ''' # 修改 df1 的 index print(df1.index) # 可以打印出print的值,同时也可以为其赋值 df1.index = Series(['beijing', 'shanghai', 'guangzhou']) print(df1) ''' a b c beijing 0 1 2 shanghai 3 4 5 guangzhou 6 7 8 ''' # 可以使用map方法进行映射,map的使用方法就和python中的map几乎一样 print(df1.index.map(str.upper)) # Index(['BEIJING', 'SHANGHAI', 'GUANGZHOU'], dtype='object') print(df1) # 结果 并未改变, 上面只是返回一个 dataframe 而已 ''' a b c beijing 0 1 2 shanghai 3 4 5 guangzhou 6 7 8 ''' # 如果 需要 改变的话,可以如下: 另外赋值给一个变量 df1.index = df1.index.map(str.upper) print(df1) # 这样 就 改变了 ''' a b c BEIJING 0 1 2 SHANGHAI 3 4 5 GUANGZHOU 6 7 8 ''' # 更快捷的 方法 使用 rename,可以分别为 index 和 column 来指定值 # 使用 map 的方式来赋值 df2 = df1.rename(index=str.lower, columns=str.upper) # 这种方法 照样是产生一个新的 dataframe print(df2) ''' 可以很轻松的 修改 dataframe 的 index 和 columns A B C beijing 0 1 2 shanghai 3 4 5 guangzhou 6 7 8 ''' # 同时,rename 还可以传入字典 df3 = df2.rename(index={'beijing':'bj'}, columns = {'A':'aa'}) # 为某个 index 单独修改名称 print(df3) # ''' aa B C bj 0 1 2 shanghai 3 4 5 guangzhou 6 7 8 ''' # 自定义map函数 def test_map(x): return x+'_ABC' print(df1.index.map(test_map)) # 输出 Index(['BEIJING_ABC', 'SHANGHAI_ABC', 'GUANGZHOU_ABC'], dtype='object') print(df1.rename(index=test_map)) ''' a b c BEIJING_ABC 0 1 2 SHANGHAI_ABC 3 4 5 GUANGZHOU_ABC 6 7 8 '''
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“pandas中DataFrame修改index、columns名的方法示例”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年08月24日
2025年08月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]