学习器在测试集上的误差我们通常称作“泛化误差”。要想得到“泛化误差”首先得将数据集划分为训练集和测试集。那么怎么划分呢?常用的方法有两种,k折交叉验证法和自助法。介绍这两种方法的资料有很多。下面是k折交叉验证法的python实现。
##一个简单的2折交叉验证 from sklearn.model_selection import KFold import numpy as np X=np.array([[1,2],[3,4],[1,3],[3,5]]) Y=np.array([1,2,3,4]) KF=KFold(n_splits=2) #建立4折交叉验证方法 查一下KFold函数的参数 for train_index,test_index in KF.split(X): print("TRAIN:",train_index,"TEST:",test_index) X_train,X_test=X[train_index],X[test_index] Y_train,Y_test=Y[train_index],Y[test_index] print(X_train,X_test) print(Y_train,Y_test) #小结:KFold这个包 划分k折交叉验证的时候,是以TEST集的顺序为主的,举例来说,如果划分4折交叉验证,那么TEST选取的顺序为[0].[1],[2],[3]。 #提升 import numpy as np from sklearn.model_selection import KFold #Sample=np.random.rand(50,15) #建立一个50行12列的随机数组 Sam=np.array(np.random.randn(1000)) #1000个随机数 New_sam=KFold(n_splits=5) for train_index,test_index in New_sam.split(Sam): #对Sam数据建立5折交叉验证的划分 #for test_index,train_index in New_sam.split(Sam): #默认第一个参数是训练集,第二个参数是测试集 #print(train_index,test_index) Sam_train,Sam_test=Sam[train_index],Sam[test_index] print('训练集数量:',Sam_train.shape,'测试集数量:',Sam_test.shape) #结果表明每次划分的数量 #Stratified k-fold 按照百分比划分数据 from sklearn.model_selection import StratifiedKFold import numpy as np m=np.array([[1,2],[3,5],[2,4],[5,7],[3,4],[2,7]]) n=np.array([0,0,0,1,1,1]) skf=StratifiedKFold(n_splits=3) for train_index,test_index in skf.split(m,n): print("train",train_index,"test",test_index) x_train,x_test=m[train_index],m[test_index] #Stratified k-fold 按照百分比划分数据 from sklearn.model_selection import StratifiedKFold import numpy as np y1=np.array(range(10)) y2=np.array(range(20,30)) y3=np.array(np.random.randn(10)) m=np.append(y1,y2) #生成1000个随机数 m1=np.append(m,y3) n=[i//10 for i in range(30)] #生成25个重复数据 skf=StratifiedKFold(n_splits=5) for train_index,test_index in skf.split(m1,n): print("train",train_index,"test",test_index) x_train,x_test=m1[train_index],m1[test_index]
Python中貌似没有自助法(Bootstrap)现成的包,可能是因为自助法原理不难,所以自主实现难度不大。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python实现K折交叉验证法的方法步骤”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]