在刚学Pandas时,行选择和列选择非常容易混淆,在这里进行一下讨论和归纳
本文的数据来源:https://github.com/fivethirtyeight/data/tree/master/fandango
import pandas as pd fandango = pd.read_csv('fandango_score_comparison.csv')
原始的数据如下(截取了一部分)
行选择
Pandas进行行选择一般有三种方法:
- 连续多行的选择用类似于python的列表切片
- 按照指定的索引选择一行或多行,使用loc[]方法
- 按照指定的位置选择一行多多行,使用iloc[]方法
第一种,使用类似于python的列表切片
n = fandango[1:3]
从结果可以看到,和python的列表切片一样,索引号从0开始,选择了索引号1和2的数据(不包括3)
第二种,按照指定的索引选择一行或多行,使用loc[]方法
o = fandango.loc[1] p = fandango.loc[1:3]
可以看到,o是一个Series,选择了索引号为1的那一行数据,注意p,它与第一种的列表索引最大的不同是包含了索引号为3的那一行数据
u = fandango.loc[[1,3]]
这里按照索引号选择不连续的行
第三种,按照指定的位置选择一行多多行,使用iloc[]方法
在上面的数据中,使用iloc[]和loc[]的效果是一样的,因为索引号都是从0开始并且连续不断,现在我要删除索引号为1和2的这两行
fandango_drop = fandango.drop([1,2], axis=0)
可以看到的确删除了两行数据
此时我仍然用loc[]来索引行号为2的那一行,就会出错
s = fandango_drop.loc[2]
但是,我使用iloc[]来进行一次
t = fandango_drop.iloc[2]
看到了吧,iloc[2]的意思是选择第三行的数据,也就是索引号为4的那一行数据,因为iloc[]的计算也是从0开始的,所以iloc[]适用于数据进行了筛选后造成索引号与原来不一致的情况
loc[]与iloc[]方法之间还有一个巨大的差别,那就是loc[]里的参数是对应的索引值即可,所以参数可以是整数,也可以是字符串。而iloc[]里的参数表示的是第几行的数据,所以只能是整数
列选择
列选择比较简单,只要直接把列名传递过去即可,如果有多列的数据,要单独指出列名或列的索引号
第一种,选择单列,选择了电影名称那一列
q = fandango['FILM']
第二种,通过指定列名选择多列
r = fandango[['FILM','Metacritic']]
第三种,非常容易让人混淆的,通过列的索引号选择多列
v = fandango[[0,1,2]]
其实,列也是有一个索引号的,看到这里不禁想问,那我要选择前5列呢?我不想写一个长列表,又不想逐个写出这5列的名称,能否用切片呢?
x = fandango[[0:5]]
事实证明,这是不行的,更好的方法是在参数中构建一个列表
w = fandango[list(range(5))]
更多的参考资料:http://pandas.pydata.org/pandas-docs/version/0.17.0/api.html
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]