前言

Python 提供给我们多种编码方式。

在某种程度上,这相当具有包容性。

来自于任何语言的人都可以编写 Python。

然而,学习写一门语言和以最优的方式写一门语言是两件不同的事情。

在这一系列名为 Python Shorts 的文章中,我将阐述 Python 提供的一些简单但是非常有用的结构,一些小技巧以及一些我在数据科学工作中遇到的案例。

在这篇文章中,我将讨论 Python 中的 for 循环,以及如何尽量避免使用它们。

写 for 循环的 3 种方式:

让我用一个简单的例子来解释下。

假设你想取得一个列表中的平方和。

在机器学习中,当我们想计算 n 维情况下两点之间的距离时,我们都会面临这个问题。

你可以使用循环很容易的做到这一点。

事实上,我想展示给你我看到的用来完成同样任务的三种方式,并让你选择你认为最好的方式。

x = [1,3,5,7,9]
sum_squared = 0

for i in range(len(x)):
  sum_squared+=x[i]**2

当我在 Python 代码中看到以上代码的时候,我知道这个人是拥有 C 或者 Java 背景的。

完成同样的事情,更 Pythonic 的方式是:

x = [1,3,5,7,9]
sum_squared = 0

for y in x:
  sum_squared+=y**2

这样更好了。

我没有索引这个列表。并且我的代码更具有可读性。

但是,更 Pythonic 的方式一行就可以完成。

x = [1,3,5,7,9]
sum_squared = sum([y**2 for y in x])

这种方法称为 List Comprehension,这很可能是我爱上 Python 的原因之一。

你也可以在 List Comprehension 中使用 if。

假设我们只想要偶数的平方数列表。

x = [1,2,3,4,5,6,7,8,9]
even_squared = [y**2 for y in x if y%2==0]
# 输出结果:
[4,16,36,64]

if-else?

如果我们同时想要偶数的平方数和奇数的立方数呢?

x = [1,2,3,4,5,6,7,8,9]
squared_cubed = [y**2 if y%2==0 else y**3 for y in x]
# 输出结果:
[1, 4, 27, 16, 125, 36, 343, 64, 729]

太棒了!

我们为什么要减少Python中循环的使用

因此,大体上遵循这个具体的准则:每当你想写一个 for 语句的时候,你应该问自己以下的问题,

  • 可以不用 for 做到吗?更 Pythonic 的风格。
  • 可以用 List Comprehension 做到吗?如果是,使用它。
  • 可以不索引数组吗?如果不是,考虑使用 enumerate。

什么是 enumerate?

有时我们既需要数组中的索引,也需要数组中的值。

在这种情况下,我更喜欢使用 enumerate 而不是索引列表。

L = ['blue', 'yellow', 'orange']
for i, val in enumerate(L):
  print("index is %d and value is %s" % (i, val))
# 输出结果:
index is 0 and value is blue
index is 1 and value is yellow
index is 2 and value is orange

有个规则是:

绝不索引一个列表,如果你能不使用它。

尝试使用 Dictionary Comprehension

也可以尝试使用 Dictionary Comprehension,它是 Python 中相对较新的补充,语法和 List Comprehension 很相似。

让我用一个例子来解释。我想为 x 中的每个值获取一个 dictionary(key:平方值)。

x = [1,2,3,4,5,6,7,8,9]
{k:k**2 for k in x}
# 输出结果:
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

如果只想得到偶数值的 dictionary 怎么办?

x = [1,2,3,4,5,6,7,8,9]
{k:k**2 for k in x if x%2==0}
# 输出结果:
{2: 4, 4: 16, 6: 36, 8: 64}

如果想同时得到偶数值的平方和奇数值的立方怎么办?

x = [1,2,3,4,5,6,7,8,9]
{k:k**2 if k%2==0 else k**3 for k in x}
# 输出结果:
{1: 1, 2: 4, 3: 27, 4: 16, 5: 125, 6: 36, 7: 343, 8: 64, 9: 729}

结论

最后,我要说的是,虽然看上去很容易将从其他语言获得的知识移用到 Python 上,但如果继续这样做,你将无法理解到 Python 的优美。当我们用 Python 的方式使用它,它的功能要强大得多,也要有趣得多。

所以,当需要 for 循环的时候,使用 List Comprehensions 和 Dictionary Comprehensions。当需要数组索引的时候,使用 enumerate。

避免像传染病一样的循环

从长远来看,你的代码将更具可读性和可维护性。

英文原文地址:Minimize for loop usage in Python

原文作者:Rahul Agarwal

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
减少,python循环,使用

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“我们为什么要减少Python中循环的使用”

暂无“我们为什么要减少Python中循环的使用”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。