图像可能在生成、传输或者采集过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪声用滤波的方法,比如中值滤波、均值滤波。但是那样的算法不适合用在处理字符这样目标狭长的图像中,因为在滤波的过程中很有可能会去掉字符本身的像素。
一个采用的是去除杂点的方法来进行去噪声处理的。具体算法如下:扫描整个图像,当发现一个黑色点的时候,就考察和该黑色点间接或者直接相连接的黑色点的个数有多少,如果大于一定的值,那就说明该点不是离散点,否则就是离散点,把它去掉。在考察相连的黑色点的时候用的是递归的方法。此处,我简单的用python实现了,大家可以参考以下。
#coding=utf-8 """ 造物奇迹QQ2737499951 """ import cv2 import numpy as np from matplotlib import pyplot as plt from PIL import Image,ImageEnhance,ImageFilter img_name = 'test.jpg' #去除干扰线 im = Image.open(img_name) #图像二值化 enhancer = ImageEnhance.Contrast(im) im = enhancer.enhance(2) im = im.convert('1') data = im.getdata() w,h = im.size #im.show() black_point = 0 for x in xrange(1,w-1): for y in xrange(1,h-1): mid_pixel = data[w*y+x] #中央像素点像素值 if mid_pixel == 0: #找出上下左右四个方向像素点像素值 top_pixel = data[w*(y-1)+x] left_pixel = data[w*y+(x-1)] down_pixel = data[w*(y+1)+x] right_pixel = data[w*y+(x+1)] #判断上下左右的黑色像素点总个数 if top_pixel == 0: black_point += 1 if left_pixel == 0: black_point += 1 if down_pixel == 0: black_point += 1 if right_pixel == 0: black_point += 1 if black_point >= 3: im.putpixel((x,y),0) #print black_point black_point = 0 im.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,图片去噪
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python 图片去噪的方法示例”评论...
更新日志
2024年11月13日
2024年11月13日
- 群星《唱给女人的歌》24K德国HD金碟[WAV+CUE]
- 孙燕姿.2011-是时候【美妙音乐】【WAV+CUE】
- 苏芮.2003-回首·时代全经典2CD【华纳】【WAV+CUE】
- 梁咏琪.1996-爱自己【EEI】【WAV+CUE】
- IGN经典逆天骚操作名著——《墙头草修炼手册》
- 突然爆火的“网红游戏”,真的有那么多人玩吗?
- 何老师客串《浪人崛起》了?盘点与明星撞脸的角色!
- 【原神】关于星鹫赤羽对珐芙琴班配队下珐露珊主C的适配度分析
- 【原神】V5.1攻略 | 迪西雅角色简评
- 【原神】大日御舆顶端怎么上去
- 胥拉齐《感谢有你》DTS-WAV
- 罗海英《金牌歌后》【WAV+CUE】
- 林叶《林叶·夜》【WAV/分轨】
- 群星《国语经典名曲01》音乐磁场系列[WAV+CUE][1G]
- 齐豫《滚石24K》24K金碟珍藏版系列[低速原抓WAV+分轨][1G]