问题描述:

给定一个二维数组,求每一行的最大值

返回一个列向量

如:

给定数组【1,2,3;4,5,3】

返回[3;5]

import numpy as np

x = np.array([[1,2,3],[4,5,3]])
# 先求每行最大值得下标
index_max = np.argmax(x, axis=1)# 其中,axis=1表示按行计算
print(index_max.shape)

max = x[range(x.shape[0]), index_max]
print(max)
# 注意到这里返回的是行向量
# 这可以是一种通用的方法,
# 其中range()可以是一个列向量,表示0到n
# index_max也是一个列向量,表示具体的坐标
# 这样,两个坐标组合起来就成为了二维索引

max_ = x[range(x.shape[0]), index_max].reshape(-1,1)
print(max_)
# 这样变成了列向量

值得注意的是:

1)np.argmax得到的是列向量,而不是行向量,这在其他的函数中也有体现

2)求和以及其他运算可以按照行或者列来,通过指定axis即可

3)通过reshape()来重新返回具体的维度,我们需要的维度。函数的参数可以有一个-1,但只能有一个,表示这个数是未知的

以上这篇python+numpy按行求一个二维数组的最大值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,numpy,二维数组,最大值

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。