如下所示:
import pandas as pd path='F:/python/python数据分析与挖掘实战/图书配套数据、代码/chapter3/demo/data/catering_fish_congee.xls' data=pd.read_excel(path,header=None,index_col=0) data.index.name='日期' data.columns=['销售额(元)'] xse=data['销售额(元)'] print(xse.max()) print(xse.min()) print(xse.max()-xse.min()) fanwei=list(range(0,4500,500)) fenzu=pd.cut(xse.values,fanwei,right=False)#分组区间,长度91 print(fenzu.codes)#标签 print(fenzu.categories)#分组区间,长度8 pinshu=fenzu.value_counts()#series,区间-个数 print(pinshu.index) import matplotlib.pyplot as plt pinshu.plot(kind='bar') #plt.text(0,29,str(29)) qujian=pd.cut(xse,fanwei,right=False) data['区间']=qujian.values data.groupby('区间').median() data.groupby('区间').mean()#每个区间平均数 pinshu_df=pd.DataFrame(pinshu,columns=['频数']) pinshu_df['频率f']=pinshu_df / pinshu_df['频数'].sum() pinshu_df['频率%']=pinshu_df['频率f'].map(lambda x:'%.2f%%'%(x*100)) pinshu_df['累计频率f']=pinshu_df['频率f'].cumsum() pinshu_df['累计频率%']=pinshu_df['累计频率f'].map(lambda x:'%.4f%%'%(x*100)) In[158]: pinshu_df Out[158]: 频数 频率f 频率% 累计频率f 累计频率% [0, 500) 29 0.318681 31.87% 0.318681 31.8681% [500, 1000) 20 0.219780 21.98% 0.538462 53.8462% [1000, 1500) 12 0.131868 13.19% 0.670330 67.0330% [1500, 2000) 12 0.131868 13.19% 0.802198 80.2198% [2000, 2500) 8 0.087912 8.79% 0.890110 89.0110% [2500, 3000) 3 0.032967 3.30% 0.923077 92.3077% [3000, 3500) 4 0.043956 4.40% 0.967033 96.7033% [3500, 4000) 3 0.032967 3.30% 1.000000 100.0000%
以上这篇pandas分区间,算频率的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
pandas,分区间,算频率
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“pandas分区间,算频率的实例”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]