在处理图像的时候经常是读取图片以后把图片转换为灰度图。作为一个刚入坑的小白,我在这篇博客记录了四种处理的方法。
首先导入包:
import numpy as np import cv2 import tensorflow as tf from PIL import Image
方法一:在使用OpenCV读取图片的同时将图片转换为灰度图:
img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE) print("cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)结果如下:") print('大小:{}'.format(img.shape)) print("类型:%s"%type(img)) print(img)
运行结果如下图所示:
方法二:使用OpenCV,先读取图片,然后在转换为灰度图:
img = cv2.imread(imgfile) #print(img.shape) #print(img) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #Y = 0.299R + 0.587G + 0.114B print("cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)结果如下:") print('大小:{}'.format(gray_img.shape)) print("类型:%s" % type(gray_img)) print(gray_img)
运行结果如下:
方法三:使用PIL库中的Image模块:
img = np.array(Image.open(imgfile).convert('L'), 'f') #读取图片,灰度化,转换为数组,L = 0.299R + 0.587G + 0.114B。'f'为float类型 print("Image方法的结果如下:") print('大小:{}'.format(img.shape)) print("类型:%s" % type(img)) print(img)
运行结果如下:
更多关于使用PIL库中的Image模块的convert()函数的知识请参考博客:https://www.jb51.net/kf/201603/492898.html
方法四:TensorFlow方法:
with tf.Session() as sess: img = tf.read_file(imgfile) #读取图片, img_data = tf.image.decode_jpeg(img, channels=3) #解码 #img_data = sess.run(tf.image.decode_jpeg(img, channels=3)) img_data = sess.run(tf.image.rgb_to_grayscale(img_data)) #灰度化 print('大小:{}'.format(img_data.shape)) print("类型:%s" % type(img_data)) print(img_data)
运行结果如下:
可以看出:TensorFlow的方法的结果与上面的三种方法的处理结果略有不同。所以在处理图像的时候最好保持方法的一致性,最好不要用这种方法读取完图片然后用另一种方法处理图片,以避免不必要的bug影响图片处理处理结果。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]