EXCEL的数值排序功能还是挺强大的,升序、降序,尤其自定义排序,能够对多个字段进行排序工作。
那么,在Python大法中,有没有这样强大的排序功能呢?答案是有的,而且本人觉得Python的排序功能,一点不比EXCEL的差。
同样,我们依然用到的是强大的pandas这个三方库。我们先将numpy和pandas导入进来:
接着构造一个今天要用到的DataFrame,我们用字典的形式来构造。
都是随意构造的,内容别较真。我们先来个简单点的热热身,按照身高的降序来排列一下。
我们用到的是df.sort_values()这个函数。第一个参数为by,传入你要排序的列的标签名即可,后面的ascending参数指示排序方法为升序还是降序,True为升序,False为降序。由于存在相同的身高,pandas会自动的比较两个相同身高所对应的index,按照index的升序来排列。
假如我有这样一个需求:先按照身高降序排序,若存在相同的身高,则再按照武力来降序排序,可以做到吗?
当然可以,我们只需要在by参数里传入列标签组成的列表即可。
通过这个例子我们可以看到,by参数不但可以传入字符串,还可以传入字符串组成的列表,来实现对多个列进行排序。
接着,我的要求再高一点。身高我依然需要降序,但是武力我需要升序,可以吗?
我们直接上结果:
跟by参数类似,我们只需要在ascending参数中也传入布尔值组成的列表就可以了,意思就是告诉pandas,这两列我各自需要的排序方式,就跟后面ascending参数里指定的一样。因此,这两个参数的列表内的元素个数需要是一致的,否则就会报错了,因为没法一一对应。
关于sort_values这个强大的排序函数就介绍到这了。除了这些参数之外,它还有inplace、kind和na_position等参数来应对不同的排序需求。可以参考官网文档进行学习
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]