机器学习实战之knn算法pandas,供大家参考,具体内容如下

开始学习机器学习实战这本书,打算看完了再回头看 周志华的 机器学习。机器学习实战的代码都是用numpy写的,有些麻烦,所以考虑用pandas来实现代码,也能回顾之前学的 用python进行数据分析。感觉目前章节的测试方法太渣,留着以后学了更多再回头写。

# coding: gbk
import pandas as pd
import numpy as np


def getdata(path):
 data = pd.read_csv(path, header=None, sep='\t')
 character = data.iloc[:, :-1]
 label = data.iloc[:, -1]
 chara_max = character.max()
 chara_min = character.min()
 chara_range = chara_max - chara_min
 normal_chara = (character - chara_min) / chara_range
 return normal_chara, label # 获得归一化特征值和标记


def knn(inX, normal_chara, label, k):
 data_sub = normal_chara - inX
 data_square = data_sub.applymap(np.square)
 data_sum = data_square.sum(axis=1)
 data_sqrt = data_sum.map(np.sqrt)
 dis_sort = data_sqrt.argsort()
 k_label = label[dis_sort[:k]]
 label_sort = k_label.value_counts()
 res_label = label_sort.index[0]
 return res_label # knn算法分类

小编为大家分享一段代码:机器学习--KNN基本实现

# _*_ coding _*_
import numpy as np
import math
import operator
 
def get_data(dataset):
 x = dataset[:,:-1].astype(np.float)
 y = dataset[:,-1]
 return x,y
# def cal_dis(a,b):
# x1,y1 = a[:]
# x2,y2 = b[:]
# dist = math.sqrt(math.pow(2,x2)-math.pow(2,x1))
 
def knnclassifer(dataset,predict,k=3):
 x,y = get_data(dataset)
 dic = {}
 distince = np.sum((predict-x)**2,axis=1)**0.5
 sorted_dict = np.argsort(distince)#[2 1 0 3 4]
 countLabel = {}
 for i in range(k):
 label = y[sorted_dict[i]]
 # print(i,sorted_dict[i],label)
 countLabel[label] = countLabel.get(label,0)+1
 new_dic = sorted(countLabel,key=operator.itemgetter(0),reverse=True)
 return new_dic[0][0]
 
if __name__ == '__main__':
 dataset = np.loadtxt("dataset.txt",dtype=np.str,delimiter=",")
 
 predict = [2,2]
 label = knnclassifer(dataset,predict,3)
 print(label)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
机器学习,knn,pandas

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“机器学习实战之knn算法pandas”

暂无“机器学习实战之knn算法pandas”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。