最近越发感觉到限制我对Python运用、以及读懂别人代码的地方,大多是在于对数据的处理能力。

其实编程本质上就是数据处理,怎么把文本数据、图像数据,通过python读入、切分等,变成一个N维矩阵,然后再带入别人的模型,bingo~跑出来一个结果。结果当然也是一个矩阵或向量的形式。

所以说,之所以对很多模型、代码束手无策,其实还是没有掌握好数据处理的“屠龙宝刀”,无法对海量数据进行“庖丁解牛”般的处理。因此,我想以一个别人代码中的一段为例,仔细琢磨文本数据处理的精妙之处,争取能够加深对这方面的运用与理解。

1) 问题描述

数据:某个区域181天内的访客数据,格式如下,第一列代表访客的名称,第二列代表这位访客在181天内到达这片区域的时刻:

python文本数据处理学习笔记详解

目的:将访客数据进行统计,并时间离散化,按照天 /周/小时处理为72624的三维矩阵。
也就是说,矩阵中的每一个值,代表该区域 周X、第几周、几点 的到访人数,如
[1,5,19]=100,代表第5周的周一晚上7点的人数为100。

2)难点

当然是对我的难点。

2.1)怎么按行统计

2.2)怎么进行时间离散化(存为天、周、时刻的矩阵)

3)代码

import time
import numpy as np
import sys
import datetime
import pandas as pd
import os
#用字典查询代替类型转换,可以减少一部分计算时间
date2position = {}
datestr2dateint = {}
str2int = {}
for i in range(182):
 date = datetime.date(day=1, month=10, year=2018)+datetime.timedelta(days=i)
 #print(i,":",date)
 date_int = int(date.__str__().replace("-", ""))
 date2position[date_int] = [i%7, i//7]
 datestr2dateint[str(date_int)] = date_int
#print(datestr2dateint)
#
for i in range(24):
 str2int[str(i).zfill(2)] = i
f=open("D:\BaiDuBigData19-URFC-master\\UrbanRegionFunctionClassification-master\data\\train_visit\\000000_008.txt")
#table = pd.read_csv(f, header=None,error_bad_lines=False)
table = pd.read_csv(f, header=None,sep='\t')

#print(table.shape)
#print(table.ix[1])
strings = table[1]
#print(strings)
init = np.zeros((7, 26, 24))
for string in strings:
 temp = []
 for item in string.split(','):
 temp.append([item[0:8], item[9:].split("|")])
 for date, visit_lst in temp:
 # x - 第几周
 # y - 第几天
 # z - 几点钟
 # value - 到访的总人数
 # print(visit_lst)
 print(date)
 x, y = date2position[datestr2dateint[date]]
 for visit in visit_lst: # 统计到访的总人数
  init[x][y][str2int[visit]] += 1
 #print(init[x][y][str2int[visit]])```

3.1)创建字典,时间离散化,节省时间

此处创建了三个字典,让我们看一下代码实现以及打印结果:

date2position = {}
datestr2dateint = {}
str2int = {}
for i in range(182):
 date = datetime.date(day=1, month=10, year=2018)+datetime.timedelta(days=i)
 #print(i,":",date)
 date_int = int(date.__str__().replace("-", ""))
 date2position[date_int] = [i%7, i//7]
 datestr2dateint[str(date_int)] = date_int
for i in range(24):
 str2int[str(i).zfill(2)] = i

打印一下 date2position:

python文本数据处理学习笔记详解

打印一下 datestr2dateint:

python文本数据处理学习笔记详解

打印str2int:

python文本数据处理学习笔记详解

可以看出,datestr2dateint是将str的日期,转换为了int的日期。
而date2position 才是计算出的每一个具体的日期,代表了第几周、第几天。
str2int代表了一天中的24个时刻。

3.2)读取文件,按行获取字符串

注意到文本的分隔符为\t(区分用户名与到访信息的分割),于是采用

f=open("D:\BaiDuBigData19-URFC-master\\UrbanRegionFunctionClassification-master\data\\train_visit\\000000_008.txt")
#table = pd.read_csv(f, header=None,error_bad_lines=False)
table = pd.read_csv(f, header=None,sep='\t')

然后用strings读取到访信息,也就是table的第二列:

strings = table[1]

3.3)切分字符串

首先,strings为:

python文本数据处理学习笔记详解

可以看到每一行string,为一个用户的到访记录,循环读取。其中,不同日期的到访是用“,”隔开,故要使用:

for string in strings:
 temp = []
 for item in string.split(','):

item就可以分开每一个日期的到访记录了:

python文本数据处理学习笔记详解

其后,使用temp列表,每一行存储日期和时刻。
如第一个item为 20181221&09|10|11|12|13|14|15
日期为 item[0:8],
时刻之间使用分隔符“|”隔开,故可以通过item[9:].split("|")得到。

temp.append([item[0:8], item[9:].split("|")])

打印一下temp为:

python文本数据处理学习笔记详解

所以需要用两个数据分别存储日期,以及时刻。
首先用来转换成 周、天、时刻的72624矩阵(根据前面的转换函数)
其后根据这个矩阵,统计每一个位置的访客数量

for date, visit_lst in temp:
 # x - 第几周
 # y - 第几天
 # z - 几点钟
 # value - 到访的总人数
 # print(visit_lst)
 #print(date)
 x, y = date2position[datestr2dateint[date]]
 for visit in visit_lst: # 统计到访的总人数
  init[x][y][str2int[visit]] += 1

这一段代码很短,但着实是整个时间离散化实现的精髓所在。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,数据处理

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“python文本数据处理学习笔记详解”

暂无“python文本数据处理学习笔记详解”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。