项目描述:

用Q-learning算法实现自动走迷宫机器人的方法示例

在该项目中,你将使用强化学习算法,实现一个自动走迷宫机器人。

如上图所示,智能机器人显示在右上角。在我们的迷宫中,有陷阱(红色×××)及终点(蓝色的目标点)两种情景。机器人要尽量避开陷阱、尽快到达目的地。

小车可执行的动作包括:向上走 u、向右走 r、向下走 d、向左走l

执行不同的动作后,根据不同的情况会获得不同的奖励,具体而言,有以下几种情况。

  • 撞到墙壁:-10
  • 走到终点:50
  • 走到陷阱:-30
  • 其余情况:-0.1

我们需要通过修改 robot.py 中的代码,来实现一个 Q Learning 机器人,实现上述的目标。

Section 1 算法理解

1.1 强化学习总览

强化学习作为机器学习算法的一种,其模式也是让智能体在“训练”中学到“经验”,以实现给定的任务。但不同于监督学习与非监督学习,在强化学习的框架中,我们更侧重通过智能体与环境的交互来学习。通常在监督学习和非监督学习任务中,智能体往往需要通过给定的训练集,辅之以既定的训练目标(如最小化损失函数),通过给定的学习算法来实现这一目标。然而在强化学习中,智能体则是通过其与环境交互得到的奖励进行学习。这个环境可以是虚拟的(如虚拟的迷宫),也可以是真实的(自动驾驶汽车在真实道路上收集数据)。

在强化学习中有五个核心组成部分,它们分别是:环境(Environment)、智能体(Agent)、状态(State)、动作(Action)和奖励(Reward)。在某一时间节点t:

智能体在从环境中感知其所处的状态用Q-learning算法实现自动走迷宫机器人的方法示例

智能体根据某些准则选择动作 用Q-learning算法实现自动走迷宫机器人的方法示例

环境根据智能体选择的动作,向智能体反馈奖励 用Q-learning算法实现自动走迷宫机器人的方法示例

通过合理的学习算法,智能体将在这样的问题设置下,成功学到一个在状态 用Q-learning算法实现自动走迷宫机器人的方法示例选择动作 用Q-learning算法实现自动走迷宫机器人的方法示例的策略 用Q-learning算法实现自动走迷宫机器人的方法示例

1.2 计算Q值

在我们的项目中,我们要实现基于 Q-Learning 的强化学习算法。Q-Learning 是一个值迭代(Value Iteration)算法。与策略迭代(Policy Iteration)算法不同,值迭代算法会计算每个”状态“或是”状态-动作“的值(Value)或是效用(Utility),然后在执行动作的时候,会设法最大化这个值。因此,对每个状态值的准确估计,是我们值迭代算法的核心。通常我们会考虑最大化动作的长期奖励,即不仅考虑当前动作带来的奖励,还会考虑动作长远的奖励。

在 Q-Learning 算法中,我们把这个长期奖励记为 Q 值,我们会考虑每个 ”状态-动作“ 的 Q 值,具体而言,它的计算公式为:

用Q-learning算法实现自动走迷宫机器人的方法示例

也就是对于当前的“状态-动作” 用Q-learning算法实现自动走迷宫机器人的方法示例,我们考虑执行动作 用Q-learning算法实现自动走迷宫机器人的方法示例后环境给我们的奖励用Q-learning算法实现自动走迷宫机器人的方法示例,以及执行动作 用Q-learning算法实现自动走迷宫机器人的方法示例 到达 用Q-learning算法实现自动走迷宫机器人的方法示例后,执行任意动作能够获得的最大的Q值用Q-learning算法实现自动走迷宫机器人的方法示例用Q-learning算法实现自动走迷宫机器人的方法示例为折扣因子。

不过一般地,我们使用更为保守地更新 Q 表的方法,即引入松弛变量 alpha,按如下的公式进行更新,使得 Q 表的迭代变化更为平缓。

用Q-learning算法实现自动走迷宫机器人的方法示例

用Q-learning算法实现自动走迷宫机器人的方法示例

根据已知条件求用Q-learning算法实现自动走迷宫机器人的方法示例

已知:如上图,机器人位于 s1,行动为 u,行动获得的奖励与题目的默认设置相同。在 s2 中执行各动作的 Q 值为:u: -24,r: -13,d: -0.29、l: +40,γ取0.9。

用Q-learning算法实现自动走迷宫机器人的方法示例

1.3 如何选择动作

在强化学习中,「探索-利用」问题是非常重要的问题。具体来说,根据上面的定义,我们会尽可能地让机器人在每次选择最优的决策,来最大化长期奖励。但是这样做有如下的弊端:

  • 在初步的学习中,我们的 Q 值会不准确,如果在这个时候都按照 Q 值来选择,那么会造成错误。
  • 学习一段时间后,机器人的路线会相对固定,则机器人无法对环境进行有效的探索。

因此我们需要一种办法,来解决如上的问题,增加机器人的探索。由此我们考虑使用 epsilon-greedy 算法,即在小车选择动作的时候,以一部分的概率随机选择动作,以一部分的概率按照最优的 Q 值选择动作。同时,这个选择随机动作的概率应当随着训练的过程逐步减小。

在如下的代码块中,实现 epsilon-greedy 算法的逻辑,并运行测试代码。

import random 
import operator 

actions = ['u','r','d','l'] 
qline = {'u':1.2, 'r':-2.1, 'd':-24.5, 'l':27} 
epsilon = 0.3 # 以0.3的概率进行随机选择 

def choose_action(epsilon):     
  action = None 
   if random.uniform(0,1.0) <= epsilon: # 以某一概率 
    action = random.choice(actions)# 实现对动作的随机选择 
   else:  
     action = max(qline.items(), key=operator.itemgetter(1))[0] # 否则选择具有最大 Q 值的动作 
   return action 
range(100): 

  res += choose_action(epsilon) 

print(res) 

res = '' 

for i in range(100): 

   res += choose_action(epsilon) 

print(res) 
 ldllrrllllrlldlldllllllllllddulldlllllldllllludlldllllluudllllllulllllllllllullullllllllldlulllllrlr

Section 2 代码实现

2.1 Maze 类理解

我们首先引入了迷宫类 Maze,这是一个非常强大的函数,它能够根据你的要求随机创建一个迷宫,或者根据指定的文件,读入一个迷宫地图信息。

  • 使用 Maze("file_name") 根据指定文件创建迷宫,或者使用 Maze(maze_size=(height, width))来随机生成一个迷宫。
  • 使用 trap number 参数,在创建迷宫的时候,设定迷宫中陷阱的数量。
  • 直接键入迷宫变量的名字按回车,展示迷宫图像(如 g=Maze("xx.txt"),那么直接输入 g 即可。
  • 建议生成的迷宫尺寸,长在 6~12 之间,宽在 10~12 之间。

在如下的代码块中,创建你的迷宫并展示。

from Maze import Maze 
%matplotlib inline 
%confer InlineBackend.figure_format = 'retina' 
  ## to-do: 创建迷宫并展示 
g=Maze(maze_size=(6,8), trap_number=1) 
g 
Maze of size (12, 12
)

用Q-learning算法实现自动走迷宫机器人的方法示例

你可能已经注意到,在迷宫中我们已经默认放置了一个机器人。实际上,我们为迷宫配置了相应的 API,来帮助机器人的移动与感知。其中你随后会使用的两个 API 为 maze.sense_robot()maze.move_robot()

  • maze.sense_robot() 为一个无参数的函数,输出机器人在迷宫中目前的位置。
  • maze.move_robot(direction) 对输入的移动方向,移动机器人,并返回对应动作的奖励值。

随机移动机器人,并记录下获得的奖励,展示出机器人最后的位置。

rewards = []   
 ## 循环、随机移动机器人10次,记录下奖励 
for i in range(10): 
  res = g.move_robot(random. Choice(actions)) 
   rewards.append(res)   
 ## 输出机器人最后的位置 
print(g.sense_robot())   
## 打印迷宫,观察机器人位置 
g 

(0,9)

用Q-learning算法实现自动走迷宫机器人的方法示例

2.2 Robot 类实现

Robot 类是我们需要重点实现的部分。在这个类中,我们需要实现诸多功能,以使得我们成功实现一个强化学习智能体。总体来说,之前我们是人为地在环境中移动了机器人,但是现在通过实现 Robot 这个类,机器人将会自己移动。通过实现学习函数,Robot 类将会学习到如何选择最优的动作,并且更新强化学习中对应的参数。

首先 Robot 有多个输入,其中 alpha=0.5, gamma=0.9, epsilon0=0.5 表征强化学习相关的各个参数的默认值,这些在之前你已经了解到,Maze 应为机器人所在迷宫对象。

随后观察 Robot.update 函数,它指明了在每次执行动作时,Robot 需要执行的程序。按照这些程序,各个函数的功能也就明了了。

运行如下代码检查效果(记得将 maze 变量修改为你创建迷宫的变量名)。

import random 
import operator    

 class Robot(object):  

  def __init__(self, maze, alpha=0.5, gamma=0.9, epsilon0=0.5):  

     self. Maze = maze 
     self.valid_actions = self.maze.valid_actions 

     self.state = None 
     self.action = None   

     # Set Parameters of the Learning Robot 
     self.alpha = alpha 
     self.gamma = gamma  

     self.epsilon0 = epsilon0 
     self. Epsilon = epsilon0 
     self.t = 0  

     self.Qtable = {} 
     self. Reset()  

  def. reset(self): 
     """ 
         Reset the robot 
     """ 
     self.state = self.sense_state() 
     self.create_Qtable_line(self.state)  

  def. set status(self, learning=False, testing=False): 
     """ 
     Determine whether the robot is learning its q table, or 
     executing the testing procedure. 
     """ 
     self. Learning = learning 
     self.testing = testing   

   def. update_parameter(self): 
     """ 
     Some of the paramters of the q learning robot can be altered, 
     update these parameters when necessary. 
     """ 
     if self.testing: 
       # TODO 1. No random choice when testing 
      self. Epsilon = 0 
     else: 
       # TODO 2. Update parameters when learning 
       self. Epsilon *= 0.95   

    return self. Epsilon   

   def. sense_state(self): 
     """ 
     Get the current state of the robot. In this 
     """ 

      # TODO 3. Return robot's current state 
          return self.maze.sense_robot()  

   def. create_Qtable_line(self, state): 
    """ 
     Create the qtable with the current state 
    """ 
     # TODO 4. Create qtable with current state 
     # Our qtable should be a two level dict, 
     # Qtable[state] ={'u':xx, 'd':xx, ...} 
     # If Qtable[state] already exits, then do 
     # not change it. 
     self.Qtable.setdefault(state, {a: 0.0 for a in self.valid_actions})       
   def. choose_action(self): 
     """ 
    Return an action according to given rules 
     """   
     def. is_random_exploration():  

       # TODO 5. Return whether do random choice 
       # hint: generate a random number, and compare 
       # it with epsilon 
      return random.uniform(0, 1.0) <= self. Epsilon 

     if self. Learning: 
       if is_random_exploration(): 
        # TODO 6. Return random choose aciton 
         return random. Choice(self.valid_actions) 
       else: 
         # TODO 7. Return action with highest q value 
         return max(self.Qtable[self.state].items(), key=operator.itemgetter(1))[0] 
     elif self.testing: 
       # TODO 7. choose action with highest q value 
       return max(self.Qtable[self.state].items(), key=operator.itemgetter(1))[0] 
     else: 
       # TODO 6. Return random choose aciton 
      return random. Choice(self.valid_actions)   

  def. update_Qtable(self, r, action, next_state): 
     """ 
     Update the qtable according to the given rule. 
     """ 
     if self. Learning: 
       # TODO 8. When learning, update the q table according 
       # to the given rules 
      self.Qtable[self.state][action] = (1 - self.alpha) * self.Qtable[self.state][action] + self.alpha * ( 
             r + self.gamma * max(self.Qtable[next_state].values())) 

  def. update(self): 
       """ 
     Describle the procedure what to do when update the robot. 
    Called every time in every epoch in training or testing. 
     Return current action and reward. 
     """ 
     self.state = self.sense_state() # Get the current state 
     self.create_Qtable_line(self.state) # For the state, create q table line 

    action = self.choose_action() # choose action for this state 
     reward = self.maze.move_robot(action) # move robot for given action 

    next_state = self.sense_state() # get next state 
     self.create_Qtable_line(next_state) # create q table line for next state 

     if self. Learning and not self.testing: 
       self.update_Qtable(reward, action, next_state) # update q table 
      self.update_parameter() # update parameters   

    return action, reward 
 # from Robot import Robot 
 # g=Maze(maze_size=(6,12), trap_number=2) 
 g=Maze("test_world\maze_01.txt") 
 robot = Robot(g) # 记得将 maze 变量修改为你创建迷宫的变量名 
 robot.set_status(learning=True,testing=False) 
 print(robot.update())  

 g 
('d', -0.1)
Maze of size (12, 12)

用Q-learning算法实现自动走迷宫机器人的方法示例

2.3 用 Runner 类训练 Robot

在完成了上述内容之后,我们就可以开始对我们 Robot 进行训练并调参了。我们准备了又一个非常棒的类 Runner ,来实现整个训练过程及可视化。使用如下的代码,你可以成功对机器人进行训练。并且你会在当前文件夹中生成一个名为 filename 的视频,记录了整个训练的过程。通过观察该视频,你能够发现训练过程中的问题,并且优化你的代码及参数。

尝试利用下列代码训练机器人,并进行调参。可选的参数包括:

  • 训练参数
    • 训练次数 epoch
  • 机器人参数:
    • epsilon0 (epsilon 初值)
    • epsilon 衰减(可以是线性、指数衰减,可以调整衰减的速度),你需要在 Robot.py 中调整
    • alpha
    • gamma
  • 迷宫参数:
    • 迷宫大小
    • 迷宫中陷阱的数量
  • 可选的参数:
  • epoch = 20
  • epsilon0 = 0.5
  • alpha = 0.5
  • gamma = 0.9
  • maze_size = (6,8)
  • trap_number = 2
from Runner import Runner 

g = Maze(maze_size=maze_size,trap_number=trap_number) 
r = Robot(g,alpha=alpha, epsilon0=epsilon0, gamma=gamma) 
r.set_status(learning=True) 

 runner = Runner(r, g) 
runner.run_training(epoch, display_direction=True) 
 #runner.generate_movie(filename = "final1.mp4") # 你可以注释该行代码,加快运行速度,不过你就无法观察到视频了。 
 g

用Q-learning算法实现自动走迷宫机器人的方法示例

使用 runner.plot_results() 函数,能够打印机器人在训练过程中的一些参数信息。

  • Success Times 代表机器人在训练过程中成功的累计次数,这应当是一个累积递增的图像。
  • Accumulated Rewards 代表机器人在每次训练 epoch 中,获得的累积奖励的值,这应当是一个逐步递增的图像。
  • Running Times per Epoch 代表在每次训练 epoch 中,小车训练的次数(到达终点就会停止该 epoch 转入下次训练),这应当是一个逐步递减的图像。

使用 runner.plot_results() 输出训练结果

 runner.plot_results() 

用Q-learning算法实现自动走迷宫机器人的方法示例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Q-learning,迷宫机器人,Q-learning,迷宫

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。