前言
缓存属性( cached_property )是一个非常常用的功能,很多知名Python项目都自己实现过它。我举几个例子:
bottle.cached_property
Bottle是我最早接触的Web框架,也是我第一次阅读的开源项目源码。最早知道 cached_property 就是通过这个项目,如果你是一个Web开发,我不建议你用这个框架,但是源码量少,值得一读~
werkzeug.utils.cached_property
Werkzeug是Flask的依赖,是应用 cached_property 最成功的一个项目。代码见延伸阅读链接2
pip._vendor.distlib.util.cached_property
PIP是Python官方包管理工具。代码见延伸阅读链接3
kombu.utils.objects.cached_property
Kombu是Celery的依赖。代码见延伸阅读链接4
django.utils.functional.cached_property
Django是知名Web框架,你肯定听过。代码见延伸阅读链接5
甚至有专门的一个包: pydanny/cached-property ,延伸阅读6
如果你犯过他们的代码其实大同小异,在我的观点里面这种轮子是完全没有必要的。Python 3.8给 functools 模块添加了 cached_property 类,这样就有了官方的实现了
PS: 其实这个Issue 2014年就建立了,5年才被Merge!
Python 3.8的cached_property
借着这个小章节我们了解下怎么使用以及它的作用(其实看名字你可能已经猜出来):
./python.exe Python 3.8.0a4+ (heads/master:9ee2c264c3, May 28 2019, 17:44:24) [Clang 10.0.0 (clang-1000.11.45.5)] on darwin Type "help", "copyright", "credits" or "license" for more information. > from functools import cached_property > class Foo: ... @cached_property ... def bar(self): ... print('calculate somethings') ... return 42 ... > f = Foo() > f.bar calculate somethings 42 > f.bar 42
上面的例子中首先获得了Foo的实例f,第一次获得 f.bar 时可以看到执行了bar方法的逻辑(因为执行了print语句),之后再获得 f.bar 的值并不会在执行bar方法,而是用了缓存的属性的值。
标准库中的版本还有一种的特点,就是加了线程锁,防止多个线程一起修改缓存。通过对比Werkzeug里的实现帮助大家理解一下:
import time from threading import Thread from werkzeug.utils import cached_property class Foo: def __init__(self): self.count = 0 @cached_property def bar(self): time.sleep(1) # 模仿耗时的逻辑,让多线程启动后能执行一会而不是直接结束 self.count += 1 return self.count threads = [] f = Foo() for x in range(10): t = Thread(target=lambda: f.bar) t.start() threads.append(t) for t in threads: t.join()
这个例子中,bar方法对 self.count 做了自增1的操作,然后返回。但是注意f.bar的访问是在10个线程下进行的,里面大家猜现在 f.bar 的值是多少?
ipython -i threaded_cached_property.py Python 3.7.1 (default, Dec 13 2018, 22:28:16) Type 'copyright', 'credits' or 'license' for more information IPython 7.5.0 -- An enhanced Interactive Python. Type '"htmlcode">./python.exe Python 3.8.0a4+ (heads/master:8cd5165ba0, May 27 2019, 22:28:15) [Clang 10.0.0 (clang-1000.11.45.5)] on darwin Type "help", "copyright", "credits" or "license" for more information. > import time > from threading import Thread > from functools import cached_property > > > class Foo: ... def __init__(self): ... self.count = 0 ... @cached_property ... def bar(self): ... time.sleep(1) ... self.count += 1 ... return self.count ... > > threads = [] > f = Foo() > > for x in range(10): ... t = Thread(target=lambda: f.bar) ... t.start() ... threads.append(t) ... > for t in threads: ... t.join() ... > f.bar可以看到,由于加了线程锁, f.bar 的结果是正确的1。
cached_property不支持异步
除了 pydanny/cached-property 这个包以外,其他的包都不支持异步函数:
./python.exe -m asyncio asyncio REPL 3.8.0a4+ (heads/master:8cd5165ba0, May 27 2019, 22:28:15) [Clang 10.0.0 (clang-1000.11.45.5)] on darwin Use "await" directly instead of "asyncio.run()". Type "help", "copyright", "credits" or "license" for more information. > import asyncio > from functools import cached_property > > > class Foo: ... def __init__(self): ... self.count = 0 ... @cached_property ... async def bar(self): ... await asyncio.sleep(1) ... self.count += 1 ... return self.count ... > f = Foo() > await f.bar 1 > await f.bar Traceback (most recent call last): File "/Users/dongwm/cpython/Lib/concurrent/futures/_base.py", line 439, in result return self.__get_result() File "/Users/dongwm/cpython/Lib/concurrent/futures/_base.py", line 388, in __get_result raise self._exception File "<console>", line 1, in <module> RuntimeError: cannot reuse already awaited coroutine pydanny/cached-property的异步支持实现的很巧妙,我把这部分逻辑抽出来: try: import asyncio except (ImportError, SyntaxError): asyncio = None class cached_property: def __get__(self, obj, cls): ... if asyncio and asyncio.iscoroutinefunction(self.func): return self._wrap_in_coroutine(obj) ... def _wrap_in_coroutine(self, obj): @asyncio.coroutine def wrapper(): future = asyncio.ensure_future(self.func(obj)) obj.__dict__[self.func.__name__] = future return future return wrapper()我解析一下这段代码:
对 import asyncio 的异常处理主要为了处理Python 2和Python3.4之前没有asyncio的问题
__get__ 里面会判断方法是不是协程函数,如果是会 return self._wrap_in_coroutine(obj)
_wrap_in_coroutine 里面首先会把方法封装成一个Task,并把Task对象缓存在 obj.__dict__ 里,wrapper通过装饰器 asyncio.coroutine 包装最后返回。为了方便理解,在IPython运行一下:
In : f = Foo()
In : f.bar # 由于用了`asyncio.coroutine`装饰器,这是一个生成器对象
Out: <generator object cached_property._wrap_in_coroutine.<locals>.wrapper at 0x10a26f0c0>In : await f.bar # 第一次获得f.bar的值,会sleep 1秒然后返回结果
Out: 1In : f.__dict__['bar'] # 这样就把Task对象缓存到了f.__dict__里面了,Task状态是finished
Out: <Task finished coro=<Foo.bar() done, defined at <ipython-input-54-7f5df0e2b4e7>:4> result=1>In : f.bar # f.bar已经是一个task了
Out: <Task finished coro=<Foo.bar() done, defined at <ipython-input-54-7f5df0e2b4e7>:4> result=1>In : await f.bar # 相当于 await task
Out: 1可以看到多次await都可以获得正常结果。如果一个Task对象已经是finished状态,直接返回结果而不会重复执行了。
总结
以上所述是小编给大家介绍的Python 3.8中实现functools.cached_property功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]