本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下
import matplotlib.pyplot as plt import dlib import numpy as np import glob import re #正脸检测器 detector=dlib.get_frontal_face_detector() #脸部关键形态检测器 sp=dlib.shape_predictor(r"D:\LB\JAVASCRIPT\shape_predictor_68_face_landmarks.dat") #人脸识别模型 facerec = dlib.face_recognition_model_v1(r"D:\LB\JAVASCRIPT\dlib_face_recognition_resnet_model_v1.dat") #候选人脸部描述向量集 descriptors=[] photo_locations=[] for photo in glob.glob(r'D:\LB\JAVASCRIPT\faces\*.jpg'): photo_locations.append(photo) img=plt.imread(photo) img=np.array(img) #开始检测人脸 dets=detector(img,1) for k,d in enumerate(dets): #检测每张照片中人脸的特征 shape=sp(img,d) face_descriptor=facerec.compute_face_descriptor(img,shape) v=np.array(face_descriptor) descriptors.append(v) #输入的待识别的人脸处理方法相同 img=plt.imread(r'D:\test_photo10.jpg') img=np.array(img) dets=detector(img,1) #计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量) differences=[] for k,d in enumerate(dets): shape=sp(img,d) face_descriptor=facerec.compute_face_descriptor(img,shape) d_test=np.array(face_descriptor) #计算输入人脸和所有已有人脸描述向量的欧氏距离 for i in descriptors: distance=np.linalg.norm(i-d_test) differences.append(distance) #按欧式距离排序 欧式距离最小的就是匹配的人脸 candidate_count=len(photo_locations) candidates_dict=dict(zip(photo_locations,differences)) candidates_dict_sorted=sorted(candidates_dict.items(),key=lambda x:x[1]) #matplotlib要正确显示中文需要设置 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['figure.figsize'] = (20.0, 70.0) ax=plt.subplot(candidate_count+1,4,1) ax.set_title("输入的人脸") ax.imshow(img) for i,(photo,distance) in enumerate(candidates_dict_sorted): img=plt.imread(photo) face_name="" photo_name=re.search(r'([^\\]*)\.jpg$',photo) if photo_name: face_name=photo_name[1] ax=plt.subplot(candidate_count+1,4,i+2) ax.set_xticks([]) ax.set_yticks([]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) if i==0: ax.set_title("最匹配的人脸\n\n"+face_name+"\n\n差异度:"+str(distance)) else: ax.set_title(face_name+"\n\n差异度:"+str(distance)) ax.imshow(img) plt.show()
以上所述是小编给大家介绍的python dlib人脸识别详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python dlib人脸识别代码实例”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年04月26日
2025年04月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]