我们可以试用可视化包——Pyechart。
Echarts是百度开源的一个数据可视化JS库,主要用于数据可视化。
pyecharts是一个用于生成Echarts图标的类库。实际就是Echarts与Python的对接。
安装
pyecharts兼容Python2和Python3。执行代码:
pip install pyecharts(快捷键Windows+R——输入cmd)
初级图表
1.柱状图/条形图
from pyecharts import Bar attr=["衬衫","羊毛衫","雪纺衫","裤子","高跟鞋","袜子"] v1=[5,20,36,10,75,90] v2=[10,25,8,60,20,80] bar=Bar("各商家产品销售情况") bar.add("商家A",attr,v1,is_stack=True) bar.add("商家B",attr,v2,is_stack=True) bar#bar.render()
2.饼图
from pyecharts import Pie attr=["衬衫","羊毛衫","雪纺衫","裤子","高跟鞋","鞋子"] v1=[11,12,13,10,10,10] pie=Pie("各产品销售情况") pie.add("",attr,v1,is_label_show=True) pie #pie.render()
3.圆环图
from pyecharts import Pie attr=["衬衫","羊毛衫","雪纺衫","裤子","高跟鞋","鞋子"] v1=[11,12,13,10,10,10] pie=Pie("饼图—圆环图示例",title_pos="center") pie.add("",attr,v1,radius=[40,75],label_text_color=None, is_label_show=True,legend_orient="vertical", legend_pos="left") pie
4.散点图
from pyecharts import Scatter v1=[10,20,30,40,50,60] v2=[10,20,30,40,50,60] scatter=Scatter("散点图示例") scatter.add("A",v1,v2) scatter.add("B",v1[::-1],v2) scatter
5.仪表盘
from pyecharts import Gauge gauge=Gauge("业务指标完成率—仪表盘") gauge.add("业务指标","完成率",66.66) gauge
6.热力图
import random from pyecharts import HeatMap x_axis=[ "12a","1a","2a","3a","4a","5a","6a","7a","8a","9a","10a","11a", "12p","1p","2p","3p","4p","5p","6p","7p","8p","9p","10p","11p",] y_axis=[ "Saturday","Friday","Thursday","Wednesday","Tuesday","Monday","Sunday"] data=[[i,j,random.randint(0,50)] for i in range(24) for j in range(7)] heatmap=HeatMap() heatmap.add("热力图直角坐标系",x_axis,y_axis,data,is_visualmap=True, visual_text_color="#000",visual_orient="horizontal") heatmap
高级图表
1.漏斗图
from pyecharts import Funnel attr=["潜在","接触","意向","明确","投入","谈判","成交"] value=[140,120,100,80,60,40,20] funnel=Funnel("销售管理分析漏斗图") funnel.add("商品",attr,value,is_label_show=True, label_pos="inside",label_text_color="#fff") funnel
2.词云图
from pyecharts import WordCloud name=[ "Sam s Club","Macys","Amy Schumer","Jurassic World","Charter Communications", "Chick Fil A","Planet Fitness","Pitch Perfect","Express","Home","Johnny Depp", "Lena Dunham","Lewis Hamilton","KXAN","Mary Ellen Mark","Farrah Abraham", "Rita Ora","Serena Williams","NCAA baseball tournament","Point Break" ] value=[ 10000,6181,4386,4055,2467,2244,1898,1484,1112, 965,847,582,555,550,462,366,360,282,273,265] wordcloud=WordCloud(width=1300,height=620) wordcloud.add("",name,value,word_size_range=[20,100]) wordcloud
3.组合图
from pyecharts import Line,Pie,Grid line=Line("折线图",width=1200) attr=["周一","周二","周三","周四","周五","周六","周日"] line.add("最高气温",attr,[11,11,15,13,12,13,10], mark_point=["max","min"],mark_line=["average"]) line.add("最低气温",attr,[1,-2,2,5,3,2,0], mark_point=["max","min"],mark_line=["average"], legend_pos="20%") attr=["衬衫","羊毛衫","雪纺衫","裤子","高跟鞋","袜子"] v1=[11,12,13,10,10,10] pie=Pie("饼图",title_pos="55%") pie.add("",attr,v1,radius=[45,65],center=[65,50], legend_pos="80%",legend_orient="vertical") grid=Grid() grid.add(line,grid_right="55%") grid.add(pie,grid_left="60%") grid
以上这篇使用Python快速制作可视化报表的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
标签:
Python,可视化,报表
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“使用Python快速制作可视化报表的方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年04月26日
2025年04月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]