上个版本的Python OpenCV图片局部区域像素值处理,虽然实现了我需要的功能,但还是走了很多弯路,我意识到图片本就是数组形式,对于8位灰度图,通道数为1,它就是个二位数组,这样就没有必要再设置ROI区域,复制出来这块区域再循环提取像素存入数组进行处理了,可以直接将图片存入数组,再利用numpy进行切分相应的数组操作就可以了,这样一想就简单很多了,这篇我会贴出修改后的代码,直接省去了大段的代码啊。
ps:这次我重新装的opencv3.2.0版本,代码里面直接用cv2了
# 查看opencv版本,终端输入: $ pkg-config --modversion opencv
cv_img_cv2.py
# -*- coding:utf-8 -*- __author__ = 'lwp' import cv2 import numpy as np import matplotlib.pyplot as plt path ='/media/lwp/A/111111.jpg' # 图片路径 lwpImg = cv2.imread(path) # 加载图片 gray_lwpImg = cv2.cvtColor(lwpImg, cv2.COLOR_BGR2GRAY) # 转为灰度图 # 画目标区域,参数分别为图片、左上坐标、右下坐标、框的颜色、框线条的粗细 lwpImg = cv2.rectangle(lwpImg, (290, 0), (310, 327), (0, 255, 0), 2) # 显示标记后的图片 cv2.imshow('local_pixel', lwpImg) # 提取图片像素值到矩阵 pixel_data = np.array(gray_lwpImg) # 提取目标区域 box_data = pixel_data[:, 290:310] # 矩阵行求和 pixel_sum = np.sum(box_data, axis=1) # 画图 x = range(576) fig = plt.figure(figsize=(4, 2)) ax1 = fig.add_subplot(1, 1, 1) ax1.bar(x, pixel_sum, width=1) # x为每个条形到x轴0点的距离,width为每个条的宽度 plt.xlabel('X') plt.ylabel('Y') plt.title('edge_filter') plt.grid(True) plt.show() key = cv2.waitKey(0) & 0xFF if key == ord('q'): # 按q关闭窗口 cv2.destroyAllWindows()
效果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python+OpenCV图片局部区域像素值处理改进版详解”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年04月26日
2025年04月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]