概述
语音识别是当前人工智能的比较热门的方向,技术也比较成熟,各大公司也相继推出了各自的语音助手机器人,如百度的小度机器人、阿里的天猫精灵等。语音识别算法当前主要是由RNN、LSTM、DNN-HMM等机器学习和深度学习技术做支撑。但训练这些模型的第一步就是将音频文件数据化,提取当中的语音特征。
MP3文件转化为WAV文件
录制音频文件的软件大多数都是以mp3格式输出的,但mp3格式文件对语音的压缩比例较重,因此首先利用ffmpeg将转化为wav原始文件有利于语音特征的提取。其转化代码如下:
from pydub import AudioSegment import pydub def MP32WAV(mp3_path,wav_path): """ 这是MP3文件转化成WAV文件的函数 :param mp3_path: MP3文件的地址 :param wav_path: WAV文件的地址 """ pydub.AudioSegment.converter = "D:\\ffmpeg\\bin\\ffmpeg.exe" MP3_File = AudioSegment.from_mp3(file=mp3_path) MP3_File.export(wav_path,format="wav")
读取WAV语音文件,对语音进行采样
利用wave库对语音文件进行采样。
代码如下:
import wave import json def Read_WAV(wav_path): """ 这是读取wav文件的函数,音频数据是单通道的。返回json :param wav_path: WAV文件的地址 """ wav_file = wave.open(wav_path,'r') numchannel = wav_file.getnchannels() # 声道数 samplewidth = wav_file.getsampwidth() # 量化位数 framerate = wav_file.getframerate() # 采样频率 numframes = wav_file.getnframes() # 采样点数 print("channel", numchannel) print("sample_width", samplewidth) print("framerate", framerate) print("numframes", numframes) Wav_Data = wav_file.readframes(numframes) Wav_Data = np.fromstring(Wav_Data,dtype=np.int16) Wav_Data = Wav_Data*1.0/(max(abs(Wav_Data))) #对数据进行归一化 # 生成音频数据,ndarray不能进行json化,必须转化为list,生成JSON dict = {"channel":numchannel, "samplewidth":samplewidth, "framerate":framerate, "numframes":numframes, "WaveData":list(Wav_Data)} return json.dumps(dict)
绘制声波折线图与频谱图
代码如下:
from matplotlib import pyplot as plt def DrawSpectrum(wav_data,framerate): """ 这是画音频的频谱函数 :param wav_data: 音频数据 :param framerate: 采样频率 """ Time = np.linspace(0,len(wav_data)/framerate*1.0,num=len(wav_data)) plt.figure(1) plt.plot(Time,wav_data) plt.grid(True) plt.show() plt.figure(2) Pxx, freqs, bins, im = plt.specgram(wav_data,NFFT=1024,Fs = 16000,noverlap=900) plt.show() print(Pxx) print(freqs) print(bins) print(im)
首先利用百度AI开发平台的语音合API生成的MP3文件进行上述过程的结果。
声波折线图
频谱图
全部代码
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2018/7/5 13:11 # @Author : DaiPuwei # @FileName: VoiceExtract.py # @Software: PyCharm # @E-mail :771830171@qq.com # @Blog :https://blog.csdn.net/qq_30091945 import numpy as np from pydub import AudioSegment import pydub import os import wave import json from matplotlib import pyplot as plt def MP32WAV(mp3_path,wav_path): """ 这是MP3文件转化成WAV文件的函数 :param mp3_path: MP3文件的地址 :param wav_path: WAV文件的地址 """ pydub.AudioSegment.converter = "D:\\ffmpeg\\bin\\ffmpeg.exe" #说明ffmpeg的地址 MP3_File = AudioSegment.from_mp3(file=mp3_path) MP3_File.export(wav_path,format="wav") def Read_WAV(wav_path): """ 这是读取wav文件的函数,音频数据是单通道的。返回json :param wav_path: WAV文件的地址 """ wav_file = wave.open(wav_path,'r') numchannel = wav_file.getnchannels() # 声道数 samplewidth = wav_file.getsampwidth() # 量化位数 framerate = wav_file.getframerate() # 采样频率 numframes = wav_file.getnframes() # 采样点数 print("channel", numchannel) print("sample_width", samplewidth) print("framerate", framerate) print("numframes", numframes) Wav_Data = wav_file.readframes(numframes) Wav_Data = np.fromstring(Wav_Data,dtype=np.int16) Wav_Data = Wav_Data*1.0/(max(abs(Wav_Data))) #对数据进行归一化 # 生成音频数据,ndarray不能进行json化,必须转化为list,生成JSON dict = {"channel":numchannel, "samplewidth":samplewidth, "framerate":framerate, "numframes":numframes, "WaveData":list(Wav_Data)} return json.dumps(dict) def DrawSpectrum(wav_data,framerate): """ 这是画音频的频谱函数 :param wav_data: 音频数据 :param framerate: 采样频率 """ Time = np.linspace(0,len(wav_data)/framerate*1.0,num=len(wav_data)) plt.figure(1) plt.plot(Time,wav_data) plt.grid(True) plt.show() plt.figure(2) Pxx, freqs, bins, im = plt.specgram(wav_data,NFFT=1024,Fs = 16000,noverlap=900) plt.show() print(Pxx) print(freqs) print(bins) print(im) def run_main(): """ 这是主函数 """ # MP3文件和WAV文件的地址 path1 = './MP3_File' path2 = "./WAV_File" paths = os.listdir(path1) mp3_paths = [] # 获取mp3文件的相对地址 for mp3_path in paths: mp3_paths.append(path1+"/"+mp3_path) print(mp3_paths) # 得到MP3文件对应的WAV文件的相对地址 wav_paths = [] for mp3_path in mp3_paths: wav_path = path2+"/"+mp3_path[1:].split('.')[0].split('/')[-1]+'.wav' wav_paths.append(wav_path) print(wav_paths) # 将MP3文件转化成WAV文件 for(mp3_path,wav_path) in zip(mp3_paths,wav_paths): MP32WAV(mp3_path,wav_path) for wav_path in wav_paths: Read_WAV(wav_path) # 开始对音频文件进行数据化 for wav_path in wav_paths: wav_json = Read_WAV(wav_path) print(wav_json) wav = json.loads(wav_json) wav_data = np.array(wav['WaveData']) framerate = int(wav['framerate']) DrawSpectrum(wav_data,framerate) if __name__ == '__main__': run_main()
以上这篇使用python实现语音文件的特征提取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
python,语音,特征提取
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]