1、遇到的问题:numpy版本
im_data = dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 这句报错
升级numpy:pip install -U numpy 但是提示已经是最新版本
解决:卸载numpy 重新安装
2.直接从压缩包中读取tiff图像
参考:http://gdal.org/gdal_virtual_file_systems.html#gdal_virtual_file_systems_vsizip
当前情况是2层压缩: /'/vsitar/C:/Users/summer/Desktop/a_PAN1.tiff'
3.读tiff
def readTif(fileName): merge_img = 0 driver = gdal.GetDriverByName('GTiff') driver.Register() dataset = gdal.Open(fileName) if dataset == None: print(fileName+ "掩膜失败,文件无法打开") return im_width = dataset.RasterXSize #栅格矩阵的列数 print('im_width:', im_width) im_height = dataset.RasterYSize #栅格矩阵的行数 print('im_height:', im_height) im_bands = dataset.RasterCount #波段数 im_geotrans = dataset.GetGeoTransform()#获取仿射矩阵信息 im_proj = dataset.GetProjection()#获取投影信息 if im_bands == 1: band = dataset.GetRasterBand(1) im_data = dataset.ReadAsArray(0,0,im_width,im_height) #获取数据 cdata = im_data.astype(np.uint8) merge_img = cv2.merge([cdata,cdata,cdata]) cv2.imwrite('C:/Users/summer/Desktop/a.jpg', merge_img) # elif im_bands == 4: # # im_data = dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 # # im_blueBand = im_data[0,0:im_width,0:im_height] #获取蓝波段 # # im_greenBand = im_data[1,0:im_width,0:im_height] #获取绿波段 # # im_redBand = im_data[2,0:im_width,0:im_height] #获取红波段 # # # im_nirBand = im_data[3,0:im_width,0:im_height] #获取近红外波段 # # merge_img=cv2.merge([im_redBand,im_greenBand,im_blueBand]) # # zeros = np.zeros([im_height,im_width],dtype = "uint8") # # data1 = im_redBand.ReadAsArray # band1=dataset.GetRasterBand(1) # band2=dataset.GetRasterBand(2) # band3=dataset.GetRasterBand(3) # band4=dataset.GetRasterBand(4) data1=band1.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #r #获取数据 data2=band2.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #g #获取数据 data3=band3.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #b #获取数据 data4=band4.ReadAsArray(0,0,im_width,im_height).astype(np.uint16) #R #获取数据 # print(data1[1][45]) # output1= cv2.convertScaleAbs(data1, alpha=(255.0/65535.0)) # print(output1[1][45]) # output2= cv2.convertScaleAbs(data2, alpha=(255.0/65535.0)) # output3= cv2.convertScaleAbs(data3, alpha=(255.0/65535.0)) merge_img1 = cv2.merge([output3,output2,output1]) #B G R cv2.imwrite('C:/Users/summer/Desktop/merge_img1.jpg', merge_img1)
4.图像裁剪:
import cv2 import numpy as np import os tiff_file = './try_img/2.tiff' save_folder = './try_img_re/' if not os.path.exists(save_folder): os.makedirs(save_folder) tif_img = cv2.imread(tiff_file) width, height, channel = tif_img.shape # print height, width, channel : 6908 7300 3 threshold = 1000 overlap = 100 step = threshold - overlap x_num = width/step + 1 y_num = height/step + 1 print x_num, y_num N = 0 yj = 0 for xi in range(x_num): for yj in range(y_num): # print xi if yj <= y_num: print yj x = step*xi y = step*yj wi = min(width,x+threshold) hi = min(height,y+threshold) # print wi , hi if wi-x < 1000 and hi-y < 1000: im_block = tif_img[wi-1000:wi, hi-1000:hi] elif wi-x > 1000 and hi-y < 1000: im_block = tif_img[x:wi, hi-1000:hi] elif wi-x < 1000 and hi-y > 1000: im_block = tif_img[wi-1000:wi, y:hi] else: im_block = tif_img[x:wi,y:hi] cv2.imwrite(save_folder + 'try' + str(N) + '.jpg', im_block) N += 1
以上这篇对Python3+gdal 读取tiff格式数据的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]