对比测试 scipy.misc PIL.Image libtiff.TIFF 三个库

输入:

1. (读取矩阵) 读入uint8、uint16、float32的lena.tif

2. (生成矩阵) 使用numpy产生随机矩阵,float64的mat

import numpy as np
from scipy import misc
from PIL import Image
from libtiff import TIFF 
#
# 读入已有图像,数据类型和原图像一致
tif32 = misc.imread('.\test\lena32.tif') #<class 'numpy.float32'>
tif16 = misc.imread('.\test\lena16.tif') #<class 'numpy.uint16'>
tif8 = misc.imread('.\test\lena8.tif') #<class 'numpy.uint8'>
# 产生随机矩阵,数据类型float64
np.random.seed(12345)
flt = np.random.randn(512, 512)   #<class 'numpy.float64'>
# 转换float64矩阵type,为后面作测试
z8 = (flt.astype(np.uint8))    #<class 'numpy.uint8'>
z16 = (flt.astype(np.uint16))   #<class 'numpy.uint16'>
z32 = (flt.astype(np.float32))   #<class 'numpy.float32'> 

①对读取图像和随机矩阵的存储

# scipy.misc『不论输入数据是何类型,输出图像均为uint8』
misc.imsave('.\test\lena32_scipy.tif', tif32) #--> 8bit(tif16和tif8同)

misc.imsave('.\test\\randmat64_scipy.tif', flt) #--> 8bit
misc.imsave('.\test\\randmat8_scipy.tif', z8) #--> 8bit(z16和z32同)

# PIL.Image『8位16位输出图像与输入数据类型保持一致,64位会存成32位』
Image.fromarray(tif32).save('.\test\lena32_Image.tif') #--> 32bit
Image.fromarray(tif16).save('.\test\lena16_Image.tif') #--> 16bit
Image.fromarray(tif8).save('.\test\lena8_Image.tif') #--> 8bit

Image.fromarray(flt).save('.\test\\randmat_Image.tif') #--> 32bit(flt.min~flt.max)
im = Image.fromarray(flt.astype(np.float32))      
im.save('.\test\\randmat32_Image.tif')     #--> 32bit(灰度值范围同上)
#『uint8和uint16类型转换,会使输出图像灰度变换到255和65535』
im = Image.frombytes('I;16', (512, 512), flt.tostring())
im.save('.\test\\randmat16_Image1.tif')    #--> 16bit(0~65535)
im = Image.fromarray(flt.astype(np.uint16))      
im.save('.\test\\randmat16_Image2.tif')    #--> 16bit(0~65535)
im = Image.fromarray(flt.astype(np.uint8))      
im.save('.\test\\randmat8_Image.tif')     #--> 8bit(0~255)

# libtiff.TIFF『输出图像与输入数据类型保持一致』
tif = TIFF.open('.\test\\randmat_TIFF.tif', mode='w') 
tif.write_image(flt, compression=None)
tif.close() #float64可以存储,但因BitsPerSample=64,一些图像软件不识别
tif = TIFF.open('.\test\\randmat32_TIFF.tif', mode='w') 
tif.write_image(flt.astype(np.float32), compression=None)
tif.close() #--> 32bit(flt.min~flt.max)
#『uint8和uint16类型转换,会使输出图像灰度变换到255和65535』
tif = TIFF.open('.\test\\randmat16_TIFF.tif', mode='w') 
tif.write_image(flt.astype(np.uint16), compression=None)
tif.close() #--> 16bit(0~65535,8位则0~255)

②图像或矩阵归一化对存储的影响

# 『使用scipy,只能存成uint8』
z16Norm = (z16-np.min(z16))/(np.max(z16)-np.min(z16)) #<class 'numpy.float64'>
z32Norm = (z32-np.min(z32))/(np.max(z32)-np.min(z32))
scipy.misc.imsave('.\test\\randmat16_norm_scipy.tif', z16Norm) #--> 8bit(0~255)

# 『使用Image,归一化后变成np.float64 直接转8bit或16bit都会超出阈值,要*255或*65535』
# 『如果没有astype的位数设置,float64会直接存成32bit』
im = Image.fromarray(z16Norm)
im.save('.\test\\randmat16_norm_Image.tif')  #--> 32bit(0~1)
im = Image.fromarray(z16Norm.astype(np.float32))
im.save('.\test\\randmat16_norm_to32_Image.tif') #--> 32bit(灰度范围值同上)
im = Image.fromarray(z16Norm.astype(np.uint16))
im.save('.\test\\randmat16_norm_to16_Image.tif') #--> 16bit(0~1)超出阈值
im = Image.fromarray(z16Norm.astype(np.uint8))
im.save('.\test\\randmat16_norm_to8_Image.tif') #--> 8bit(0~1)超出阈值

im = Image.fromarray((z16Norm*65535).astype(np.uint16))
im.save('.\test\\randmat16_norm_to16_Image1.tif') #--> 16bit(0~65535)
im = Image.fromarray((z16Norm*255).astype(np.uint16))
im.save('.\test\\randmat16_norm_to16_Image2.tif') #--> 16bit(0~255)
im = Image.fromarray((z16Norm*255).astype(np.uint8))
im.save('.\test\\randmat16_norm_to8_Image2.tif') #--> 8bit(0~255)
# 『使用TIFF结果同Image』

③TIFF读取和存储多帧tiff图像

#tiff文件解析成图像序列:读取tiff图像
def tiff_to_read(tiff_image_name): 
 tif = TIFF.open(tiff_image_name, mode = "r") 
 im_stack = list()
 for im in list(tif.iter_images()): 
  im_stack.append(im)
 return 
 #根据文档,应该是这样实现,但测试中不管是tif.read_image还是tif.iter_images读入的矩阵数值都有问题

#图像序列保存成tiff文件:保存tiff图像 
def write_to_tiff(tiff_image_name, im_array, image_num):
 tif = TIFF.open(tiff_image_name, mode = 'w') 
 for i in range(0, image_num): 
  im = Image.fromarray(im_array[i])
  #缩放成统一尺寸 
  im = im.resize((480, 480), Image.ANTIALIAS) 
  tif.write_image(im, compression = None)  
 out_tiff.close() 
 return 

补充:libtiff读取多帧tiff图像

因为TIFF.open().read_image()和TIFF.open().iter_images()有问题,则换一种方式读

from libtiff import TIFFfile
tif = TIFFfile('.\test\lena32-3.tif')
samples, _ = tif.get_samples()

以上这篇浅谈python下tiff图像的读取和保存方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
python,tiff,读取,保存

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“浅谈python下tiff图像的读取和保存方法”

暂无“浅谈python下tiff图像的读取和保存方法”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。