一、理论知识准备

1.确定假设函数

如:y=2x+7
其中,(x,y)是一组数据,设共有m个

2.误差cost

用平方误差代价函数

python实现机器学习之元线性回归

3.减小误差(用梯度下降)

python实现机器学习之元线性回归
python实现机器学习之元线性回归

二、程序实现步骤

1.初始化数据

x、y:样本
learning rate:学习率
循环次数loopNum:梯度下降次数

2.梯度下降

循环(循环loopNum次):
(1)算偏导(需要一个for循环遍历所有数据)
(2)利用梯度下降数学式子

三、程序代码

import numpy as np

def linearRegression(data_x,data_y,learningRate,loopNum):
  w,b=0,0

  #梯度下降
  for i in range(loopNum):
    w_derivative, b_derivative, cost = 0, 0, 0
    for j in range(len(data_x)):
      wxPlusb=w*data_x[j]+b
      w_derivative+=(wxPlusb-data_y[j])*data_x[j]
      b_derivative+=wxPlusb-data_y[j]
      cost+=(wxPlusb-data_y[j])*(wxPlusb-data_y[j])
    w_derivative=w_derivative/len(data_x)
    b_derivative=b_derivative/len(data_x)

    w = w - learningRate*w_derivative
    b = b - learningRate*b_derivative

    cost = cost/(2*len(data_x))
    if i%100==0:
      print(cost)
  print(w)
  print(b)

if __name__== "__main__": #_x:protected __x:private
  x=np.random.normal(0,10,100)
  noise=np.random.normal(0,0.05,100)
  y=2*x+7+noise
  linearRegression(x,y,0.01,5000)

四、输出

1.输出cost

python实现机器学习之元线性回归 

可以看到,一开始的误差是很大的,然后减小了

python实现机器学习之元线性回归 

最后几次输出的cost没有变化,可以将训练的次数减小一点

2.训练完的w和b

python实现机器学习之元线性回归 

和目标w=2,b=7很接近

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,元线性回归

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“python实现机器学习之元线性回归”

暂无“python实现机器学习之元线性回归”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。