Summary
主要包括以下三种途径:
使用独立的函数;
使用torch.type()函数;
使用type_as(tesnor)将张量转换为给定类型的张量。
使用独立函数
import torch tensor = torch.randn(3, 5) print(tensor) # torch.long() 将tensor投射为long类型 long_tensor = tensor.long() print(long_tensor) # torch.half()将tensor投射为半精度浮点类型 half_tensor = tensor.half() print(half_tensor) # torch.int()将该tensor投射为int类型 int_tensor = tensor.int() print(int_tensor) # torch.double()将该tensor投射为double类型 double_tensor = tensor.double() print(double_tensor) # torch.float()将该tensor投射为float类型 float_tensor = tensor.float() print(float_tensor) # torch.char()将该tensor投射为char类型 char_tensor = tensor.char() print(char_tensor) # torch.byte()将该tensor投射为byte类型 byte_tensor = tensor.byte() print(byte_tensor) # torch.short()将该tensor投射为short类型 short_tensor = tensor.short() print(short_tensor)
-0.5841 -1.6370 0.1353 0.6334 -3.0761 -0.2628 0.1245 0.8626 0.4095 -0.3633 1.3605 0.5055 -2.0090 0.8933 -0.6267 [torch.FloatTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0 [torch.LongTensor of size 3x5] -0.5840 -1.6367 0.1353 0.6333 -3.0762 -0.2627 0.1245 0.8628 0.4094 -0.3633 1.3604 0.5054 -2.0098 0.8936 -0.6265 [torch.HalfTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0 [torch.IntTensor of size 3x5] -0.5841 -1.6370 0.1353 0.6334 -3.0761 -0.2628 0.1245 0.8626 0.4095 -0.3633 1.3605 0.5055 -2.0090 0.8933 -0.6267 [torch.DoubleTensor of size 3x5] -0.5841 -1.6370 0.1353 0.6334 -3.0761 -0.2628 0.1245 0.8626 0.4095 -0.3633 1.3605 0.5055 -2.0090 0.8933 -0.6267 [torch.FloatTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0 [torch.CharTensor of size 3x5] 0 255 0 0 253 0 0 0 0 0 1 0 254 0 0 [torch.ByteTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0 [torch.ShortTensor of size 3x5]
其中,torch.Tensor、torch.rand、torch.randn 均默认生成 torch.FloatTensor型 :
import torch tensor = torch.Tensor(3, 5) assert isinstance(tensor, torch.FloatTensor) tensor = torch.rand(3, 5) assert isinstance(tensor, torch.FloatTensor) tensor = torch.randn(3, 5) assert isinstance(tensor, torch.FloatTensor)
使用torch.type()函数
type(new_type=None, async=False)
import torch tensor = torch.randn(3, 5) print(tensor) int_tensor = tensor.type(torch.IntTensor) print(int_tensor)
-0.4449 0.0332 0.5187 0.1271 2.2303 1.3961 -0.1542 0.8498 -0.3438 -0.2834 -0.5554 0.1684 1.5216 2.4527 0.0379 [torch.FloatTensor of size 3x5] 0 0 0 0 2 1 0 0 0 0 0 0 1 2 0 [torch.IntTensor of size 3x5]
使用type_as(tesnor)将张量转换为给定类型的张量
import torch tensor_1 = torch.FloatTensor(5) tensor_2 = torch.IntTensor([10, 20]) tensor_1 = tensor_1.type_as(tensor_2) assert isinstance(tensor_1, torch.IntTensor)
以上这篇pytorch: tensor类型的构建与相互转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“pytorch: tensor类型的构建与相互转换实例”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月12日
2025年01月12日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]