本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下
``` from __future__ import division import numpy as np import scipy.fftpack import scipy.ndimage import cv2 import matplotlib.pyplot as plt #sns.set(style="darkgrid") def DST(x): """ Converts Scipy's DST output to Matlab's DST (scaling). """ X = scipy.fftpack.dst(x,type=1,axis=0) return X/2.0 def IDST(X): """ Inverse DST. Python -> Matlab """ n = X.shape[0] x = np.real(scipy.fftpack.idst(X,type=1,axis=0)) return x/(n+1.0) def get_grads(im): """ return the x and y gradients. """ [H,W] = im.shape Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32') j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1) Dx[j,k] = im[j,k+1] - im[j,k] Dy[j,k] = im[j+1,k] - im[j,k] return Dx,Dy def get_laplacian(Dx,Dy): """ return the laplacian """ [H,W] = Dx.shape Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W)) j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1) Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k] Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k] return Dxx+Dyy def poisson_solve(gx,gy,bnd): # convert to double: gx = gx.astype('float32') gy = gy.astype('float32') bnd = bnd.astype('float32') H,W = bnd.shape L = get_laplacian(gx,gy) # set the interior of the boundary-image to 0: bnd[1:-1,1:-1] = 0 # get the boundary laplacian: L_bp = np.zeros_like(L) L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] + bnd[1:-1,2:] + bnd[1:-1,0:-2] + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x L = L - L_bp L = L[1:-1,1:-1] # compute the 2D DST: L_dst = DST(DST(L).T).T #first along columns, then along rows # normalize: [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1)) D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2) L_dst = L_dst/D img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns img = bnd.copy() img[1:-1,1:-1] = img_interior return img def blit_images(im_top,im_back,scale_grad=1.0,mode='max'): """ combine images using poission editing. IM_TOP and IM_BACK should be of the same size. """ assert np.all(im_top.shape==im_back.shape) im_top = im_top.copy().astype('float32') im_back = im_back.copy().astype('float32') im_res = np.zeros_like(im_top) # frac of gradients which come from source: for ch in xrange(im_top.shape[2]): ims = im_top[:,:,ch] imd = im_back[:,:,ch] [gxs,gys] = get_grads(ims) [gxd,gyd] = get_grads(imd) gxs *= scale_grad gys *= scale_grad gxs_idx = gxs!=0 gys_idx = gys!=0 # mix the source and target gradients: if mode=='max': gx = gxs.copy() gxm = (np.abs(gxd))>np.abs(gxs) gx[gxm] = gxd[gxm] gy = gys.copy() gym = np.abs(gyd)>np.abs(gys) gy[gym] = gyd[gym] # get gradient mixture statistics: f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6) f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6) if min(f_gx, f_gy) <= 0.35: m = 'max' if scale_grad > 1: m = 'blend' return blit_images(im_top, im_back, scale_grad=1.5, mode=m) elif mode=='src': gx,gy = gxd.copy(), gyd.copy() gx[gxs_idx] = gxs[gxs_idx] gy[gys_idx] = gys[gys_idx] elif mode=='blend': # from recursive call: # just do an alpha blend gx = gxs+gxd gy = gys+gyd im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255) return im_res.astype('uint8') def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries if __name__=='__main__': """ example usage: """ import seaborn as sns im_src = cv2.imread('../f01006.jpg').astype('float32') im_dst = cv2.imread('../f01006-5.jpg').astype('float32') mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0) # print mu sz = (1920,1080) im_src = cv2.resize(im_src,sz) im_dst = cv2.resize(im_dst,sz) im0 = im_dst[:,:,0] > 100 im_dst[im0,:] = im_src[im0,:] im_dst[~im0,:] = 50 im_dst = cv2.GaussianBlur(im_dst,(5,5),5) im_alpha = 0.8*im_dst + 0.2*im_src # plt.imshow(im_dst) # plt.show() im_res = blit_images(im_src,im_dst) import scipy scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8')) scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8')) scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8')) im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0] im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0] im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0] # plt.imshow(im_alpha_L) # plt.show() for i in xrange(500,im_alpha_L.shape[1],5): l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1] l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1] l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1] with sns.axes_style("darkgrid"): plt.subplot(2,1,2) #plt.plot(l_alpha,label='alpha') plt.plot(l_poisson,label='poisson') plt.hold(True) plt.plot(l_actual,label='actual') plt.legend() # find "text regions": is_txt = ~im0[i,:] t_loc = contiguous_regions(is_txt) ax = plt.gca() for b0,b1 in t_loc: ax.axvspan(b0, b1, facecolor='red', alpha=0.1) with sns.axes_style("white"): plt.subplot(2,1,1) plt.imshow(im_alpha[:,:,::-1].astype('uint8')) plt.hold(True) plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r') plt.axis('image') plt.show() plt.subplot(1,3,1) plt.imshow(im_src[:,:,::-1].astype('uint8')) plt.subplot(1,3,2) plt.imshow(im_alpha[:,:,::-1].astype('uint8')) plt.subplot(1,3,3) plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,泊松图像融合
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python实现泊松图像融合”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月12日
2025年01月12日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]