本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下
当我们想比较两张图片相似度的时候,可以使用这一节提到的技术
直方图对比
反向投影
关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:
0x01. 绘制直方图
import cv2.cv as cv def drawGraph(ar,im, size): #Draw the histogram on the image minV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max value hpt = 0.9 * histsize for i in range(size): intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the image cv.Line(im, (i,size), (i,int(size-intensity)),cv.Scalar(255,255,255)) #Draw the line i += 1 #---- Gray image orig = cv.LoadImage("img/lena.jpg", cv.CV_8U) histsize = 256 #Because we are working on grayscale pictures which values within 0-255 hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1) cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picture histImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values drawGraph(hist.bins, histImg, histsize) cv.ShowImage("Original Image", orig) cv.ShowImage("Original Histogram", histImg) #--------------------- #---- Equalized image imEq = cv.CloneImage(orig) cv.EqualizeHist(imEq, imEq) #Equlize the original image histEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1) cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values drawGraph(histEq.bins, eqImg, histsize) cv.ShowImage("Image Equalized", imEq) cv.ShowImage("Equalized HIstogram", eqImg) #-------------------------------- cv.WaitKey(0)
0x02. 反向投影
import cv2.cv as cv im = cv.LoadImage("img/lena.jpg", cv.CV_8U) cv.SetImageROI(im, (1, 1,30,30)) histsize = 256 #Because we are working on grayscale pictures hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1) cv.CalcHist([im], hist) cv.NormalizeHist(hist,1) # The factor rescale values by multiplying values by the factor _,max_value,_,_ = cv.GetMinMaxHistValue(hist) if max_value == 0: max_value = 1.0 cv.NormalizeHist(hist,256/max_value) cv.ResetImageROI(im) res = cv.CreateMat(im.height, im.width, cv.CV_8U) cv.CalcBackProject([im], res, hist) cv.Rectangle(im, (1,1), (30,30), (0,0,255), 2, cv.CV_FILLED) cv.ShowImage("Original Image", im) cv.ShowImage("BackProjected", res) cv.WaitKey(0)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python OpenCV处理图像之图像直方图和反向投影”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月12日
2025年01月12日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]