如下所示:
import pandas as pd from numpy import * import matplotlib.pylab as plt import copy def read(filename): dat=pd.read_csv(filename,iterator=True) loop = True chunkSize = 1000000 R=[] while loop: try: data = dat.get_chunk(chunkSize) data=data.loc[:,'B':'C'] # 切片 data=data[data.B==855] #条件选择 data['C']=pd.to_datetime(data['C']) # 转换成时间格式 data=data.set_index(['C']) # 设置索引 data.loc[:,'D']=array([1]*len(data)) #增加一列 data=data.resample('D').sum() #按天求和 data=data.loc[:,'D'] #截取 data.fillna(0) #填充缺失值 R.append(data) except StopIteration: loop = False print ("Iteration is stopped.") R.to_csv('855_pay.csv') # 保存 def read2(filename): reader=pd.read_csv(filename,iterator=True) loop = True chunkSize = 100000 chunks = [] while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) except StopIteration: loop = False print ("Iteration is stopped.") df = pd.concat(chunks, ignore_index=True) return df def read3save(filename): dat=pd.read_csv(filename) #data = dat.get_chunk(chunkSize) data=dat.loc[:,'B':'C'] # 切片 data=data[data.B==855]#条件选择 print(shape(data)) data['C']=pd.to_datetime(data['C']) # 转换成时间格式 data=data.set_index(['C'])# 设置索引 if len(data)==0: return data.loc[:,'D']=array([1]*len(data)) #增加一列 data=data.resample('D').sum() #按天求和 data=data.loc[:,'D'] #截取 data.fillna(0) #填充缺失值 data.to_csv('855_pay.csv',mode='a') # 保存 def loadDataSet(fileName, delim='\t'): fr = open(fileName) stringArr = [line.strip().split(delim) for line in fr.readlines()] datArr = [list(map(float,line)) for line in stringArr] return mat(datArr) def getShopData(): fr = open('shopInfo.txt') shopID = [line.strip().split('\n') for line in fr.readlines()] # datArr = [list(map(float,line))for line in stringArr] for i in range(1,9): name="user_pay.001.00%d"%i dat=pd.read_csv(name) #data = dat.get_chunk(chunkSize) data=dat.loc[:,'B':'C'] # 切片 for factor in shopID: data=data[data.B==int(str(factor[0]))]#条件选择 print(shape(data)) if len(data)==0: continue data['C']=pd.to_datetime(data['C']) # 转换成时间格式 data=data.set_index(['C'])# 设置索引 data.loc[:,'D']=array([1]*len(data)) #增加一列 data=data.resample('D').sum() #按天求和 data=data.loc[:,'D'] #截取 data.fillna(0) #填充缺失值 s=str(factor[0]) savename='D:\python\data\%s_pay.csv'%s data.to_csv(savename,mode='a') # 保存 del dat print("over") def tset(filename): dat=pd.read_csv(filename) #data = dat.get_chunk(chunkSize) data=dat.loc[:,'B':'C'] # 切片 data=data[data.B==855]#条件选择 print(shape(data)) data['C']=pd.to_datetime(data['C']) # 转换成时间格式 data=data.set_index(['C'])# 设置索引 if len(data)==0: return data.loc[:,'D']=array([1]*len(data)) #增加一列 data=data.resample('D').sum() #按天求和 data=data.loc[:,'D'] #截取 data.fillna(0) #填充缺失值 #data.to_csv('855_pay.csv',mode='a') # 保存 s='my' savename='D:\python\data\%s_pay.csv'%s data.to_csv(savename,mode='a') # 保存 def getShopData2(filename): import csv # fr = open('shopInfo.txt') # shopID = [line.strip().split('\n') for line in fr.readlines()] # datArr = [list(map(float,line))for line in stringArr] #for i in range(1,9): #name="user_pay.001.00%d"%i dat=pd.read_csv(filename) #data = dat.get_chunk(chunkSize) data=dat.loc[:,'B':'C'] # 切片 data['C']=pd.to_datetime(data['C']) # 转换成时间格式 data=data.set_index(['C'])# 设置索引 data.loc[:,'D']=array([1]*len(data)) #增加一列 for i in range(1,2001): d=copy.copy(data) d=d[data.B==i]#条件选择 #print(shape(d)) print(i) if len(d)==0: continue d=d.resample('D').sum() #按天求和 d=d.loc[:,'D'] #截取 d.fillna(0) #填充缺失值 s=str(i) #print(s) savename='D:\python\data2\%s_pay.csv'%s c=open(savename,'a') writer=csv.writer(c) writer.writerow(['C','D']) c.close() d.to_csv(savename,mode='a') # 保存 # del dat print("over") def formatData(): #fr = open('shopInfo.txt') #shopID = [line.strip().split('\n') for line in fr.readlines()] # datArr = [list(map(float,line))for line in stringArr] #data = dat.get_chunk(chunkSize) for i in range(1,2001): s=str(i) print(s) name='D:\python\data2\%s_pay.csv'%s dat=pd.read_csv(name) data['C']=pd.to_datetime(data['C']) # 转换成时间格式 data=data.set_index(['C'])# 设置索引 data=data.resample('D').sum() #按天求和 data.fillna(0) #填充缺失值 savename='D:\python\data3\%s_pay.csv'%s data.to_csv(savename,mode='w') # 保存 del dat print("over")
以上这篇python pandas 对时间序列文件处理的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python pandas 对时间序列文件处理的实例”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月12日
2025年01月12日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]