用python写了一个简单版本的textrank,实现提取关键词的功能。
import numpy as np import jieba import jieba.posseg as pseg class TextRank(object): def __init__(self, sentence, window, alpha, iternum): self.sentence = sentence self.window = window self.alpha = alpha self.edge_dict = {} #记录节点的边连接字典 self.iternum = iternum#迭代次数 #对句子进行分词 def cutSentence(self): jieba.load_userdict('user_dict.txt') tag_filter = ['a','d','n','v'] seg_result = pseg.cut(self.sentence) self.word_list = [s.word for s in seg_result if s.flag in tag_filter] print(self.word_list) #根据窗口,构建每个节点的相邻节点,返回边的集合 def createNodes(self): tmp_list = [] word_list_len = len(self.word_list) for index, word in enumerate(self.word_list): if word not in self.edge_dict.keys(): tmp_list.append(word) tmp_set = set() left = index - self.window + 1#窗口左边界 right = index + self.window#窗口右边界 if left < 0: left = 0 if right >= word_list_len: right = word_list_len for i in range(left, right): if i == index: continue tmp_set.add(self.word_list[i]) self.edge_dict[word] = tmp_set #根据边的相连关系,构建矩阵 def createMatrix(self): self.matrix = np.zeros([len(set(self.word_list)), len(set(self.word_list))]) self.word_index = {}#记录词的index self.index_dict = {}#记录节点index对应的词 for i, v in enumerate(set(self.word_list)): self.word_index[v] = i self.index_dict[i] = v for key in self.edge_dict.keys(): for w in self.edge_dict[key]: self.matrix[self.word_index[key]][self.word_index[w]] = 1 self.matrix[self.word_index[w]][self.word_index[key]] = 1 #归一化 for j in range(self.matrix.shape[1]): sum = 0 for i in range(self.matrix.shape[0]): sum += self.matrix[i][j] for i in range(self.matrix.shape[0]): self.matrix[i][j] /= sum #根据textrank公式计算权重 def calPR(self): self.PR = np.ones([len(set(self.word_list)), 1]) for i in range(self.iternum): self.PR = (1 - self.alpha) + self.alpha * np.dot(self.matrix, self.PR) #输出词和相应的权重 def printResult(self): word_pr = {} for i in range(len(self.PR)): word_pr[self.index_dict[i]] = self.PR[i][0] res = sorted(word_pr.items(), key = lambda x : x[1], reverse=True) print(res) if __name__ == '__main__': s = '程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。' tr = TextRank(s, 3, 0.85, 700) tr.cutSentence() tr.createNodes() tr.createMatrix() tr.calPR() tr.printResult()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python实现textrank关键词提取”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月12日
2025年01月12日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]