用python写了一个简单版本的textrank,实现提取关键词的功能。

import numpy as np 
import jieba 
import jieba.posseg as pseg 
 
class TextRank(object): 
   
  def __init__(self, sentence, window, alpha, iternum): 
    self.sentence = sentence 
    self.window = window 
    self.alpha = alpha 
    self.edge_dict = {} #记录节点的边连接字典 
    self.iternum = iternum#迭代次数 
 
  #对句子进行分词 
  def cutSentence(self): 
    jieba.load_userdict('user_dict.txt') 
    tag_filter = ['a','d','n','v'] 
    seg_result = pseg.cut(self.sentence) 
    self.word_list = [s.word for s in seg_result if s.flag in tag_filter] 
    print(self.word_list) 
 
  #根据窗口,构建每个节点的相邻节点,返回边的集合 
  def createNodes(self): 
    tmp_list = [] 
    word_list_len = len(self.word_list) 
    for index, word in enumerate(self.word_list): 
      if word not in self.edge_dict.keys(): 
        tmp_list.append(word) 
        tmp_set = set() 
        left = index - self.window + 1#窗口左边界 
        right = index + self.window#窗口右边界 
        if left < 0: left = 0 
        if right >= word_list_len: right = word_list_len 
        for i in range(left, right): 
          if i == index: 
            continue 
          tmp_set.add(self.word_list[i]) 
        self.edge_dict[word] = tmp_set 
 
  #根据边的相连关系,构建矩阵 
  def createMatrix(self): 
    self.matrix = np.zeros([len(set(self.word_list)), len(set(self.word_list))]) 
    self.word_index = {}#记录词的index 
    self.index_dict = {}#记录节点index对应的词 
 
    for i, v in enumerate(set(self.word_list)): 
      self.word_index[v] = i 
      self.index_dict[i] = v 
    for key in self.edge_dict.keys(): 
      for w in self.edge_dict[key]: 
        self.matrix[self.word_index[key]][self.word_index[w]] = 1 
        self.matrix[self.word_index[w]][self.word_index[key]] = 1 
    #归一化 
    for j in range(self.matrix.shape[1]): 
      sum = 0 
      for i in range(self.matrix.shape[0]): 
        sum += self.matrix[i][j] 
      for i in range(self.matrix.shape[0]): 
        self.matrix[i][j] /= sum 
 
  #根据textrank公式计算权重 
  def calPR(self): 
    self.PR = np.ones([len(set(self.word_list)), 1]) 
    for i in range(self.iternum): 
      self.PR = (1 - self.alpha) + self.alpha * np.dot(self.matrix, self.PR) 
 
  #输出词和相应的权重 
  def printResult(self): 
    word_pr = {} 
    for i in range(len(self.PR)): 
      word_pr[self.index_dict[i]] = self.PR[i][0] 
    res = sorted(word_pr.items(), key = lambda x : x[1], reverse=True) 
    print(res) 
 
if __name__ == '__main__': 
  s = '程序员(英文Programmer)是从事程序开发、维护的专业人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚,特别是在中国。软件从业人员分为初级程序员、高级程序员、系统分析员和项目经理四大类。' 
  tr = TextRank(s, 3, 0.85, 700) 
  tr.cutSentence() 
  tr.createNodes() 
  tr.createMatrix() 
  tr.calPR() 
  tr.printResult() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
python,textrank,关键词

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“python实现textrank关键词提取”

暂无“python实现textrank关键词提取”评论...

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。