本文实例讲述了Python实现多条件筛选目标数据功能。分享给大家供大家参考,具体如下:
python中提供了一些数据过滤功能,可以使用内建函数,也可以使用循环语句来判断,或者使用pandas库,当然在有些情况下使用pandas是为了提高工作效率。举例如下:
a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')]
这里的a为一个list,列表中还有元组。每一个元组由单词和其词性组成,我们要筛选词性为JJ何NN的单词。可以有三种写法:
第一种,使用内建函数filter:
# -*- coding:utf-8 -*- #!python3 a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')] def filt_nn(data_text): nn_data = filter(lambda x: x[1] == 'NN'or x[1] == 'JJ', data_text) # print(list(nn_data)) return list(nn_data) print(filt_nn(a))
运行结果:
[('chic', 'JJ'), ('menu', 'JJ'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')]
第二种,使用pandas包:
# -*- coding:utf-8 -*- #!python3 import pandas as pd a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')] data = pd.DataFrame(a, columns=['word', 'ps']) print(data[data.ps.isin(['JJ', 'NN'])].word)
运行结果:
0 chic
2 menu
4 doesnt
5 scream
6 french
7 cuisine
Name: word, dtype: object
第三种,使用循环:
# -*- coding:utf-8 -*- #!python3 a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')] absd = [] for i in a: if i[1] == 'NN' or i[1] == 'JJ': absd.append(i[0]) print(absd)
得到的结果都相同,如下:
['chic', 'menu', 'doesnt', 'scream', 'french', 'cuisine']
虽然结果相同,但是推荐第一、二种方法,因为这两个方法速度更快。
更多关于Python相关内容可查看本站专题:《Python列表(list)操作技巧总结》、《Python字符串操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]