相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响。。。
到今天终于完全搞清楚了!!!
先手工生出一个数据框吧
import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc'))
df 是这样子滴
那么这三种选取数据的方式该怎么选择呢?
一、当每列已有column name时,用 df [ 'a' ] 就能选取出一整列数据。如果你知道column names 和index,且两者都很好输入,可以选择 .loc
df.loc[0, 'a'] df.loc[0:3, ['a', 'b']] df.loc[[1, 5], ['b', 'c']]
由于这边我们没有命名index,所以是DataFrame自动赋予的,为数字0-9
二、如果我们嫌column name太长了,输入不方便,有或者index是一列时间序列,更不好输入,那就可以选择 .iloc了。这边的 i 我觉得代表index,比较好记点。
df.iloc[1,1] df.iloc[0:3, [0,1]] df.iloc[[0, 3, 5], 0:2]
iloc 使得我们可以对column使用slice(切片)的方法对数据进行选取。
三、.ix 的功能就更强大了,它允许我们混合使用下标和名称进行选取。 可以说它涵盖了前面所有的用法。基本上把前面的都换成df.ix 都能成功,但是有一点,就是
df.ix [ [ ..1.. ], [..2..] ], 1框内必须统一,必须同时是下标或者名称,2框也一样。 BTW, 1框是用来指定row,2框是指定column, 当然上面所有的取数方法都是这个规则。
这就是我目前的领悟吧。
以上这篇python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]