当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取:

import pandas as pd
f = open('E:/学习相关/Python/数据样例/用户侧数据/test数据.csv')
reader = pd.read_csv(f, sep=',', iterator=True)
loop = True
chunkSize = 100000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 loop = False
 print("Iteration is stopped.")
df = pd.concat(chunks, ignore_index=True)
print(df)

read_csv()函数的iterator参数等于True时,表示返回一个TextParser以便逐块读取文件;

chunkSize表示文件块的大小,用于迭代;

TextParser类的get_chunk方法用于读取任意大小的文件块;

StopIteration的异常表示在循环对象穷尽所有元素时报错;

concat()函数用于将数据做轴向连接:

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, Verify_integrity=False)

常用参数:

objs:Series,DataFrame或者是Panel构成的序列list;

axis:需要合并连接的轴,0是行,1是列;

join:连接的参数,inner或outer;

ignore=True表示重建索引。

以上这篇通过Pandas读取大文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

标签:
Pandas,读取,大文件

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“通过Pandas读取大文件的实例”

暂无“通过Pandas读取大文件的实例”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。