经常需要通过python代码来提取文本的关键词,用于文本分析。而实际应用中文本量又是大量的数据,如果使用单进程的话,效率会比较低,因此可以考虑使用多进程。
python的多进程只需要使用multiprocessing的模块就行,如果使用大量的进程就可以使用multiprocessing的进程池--Pool,然后不同进程处理时使用apply_async函数进行异步处理即可。
实验测试语料:message.txt中存放的581行文本,一共7M的数据,每行提取100个关键词。
代码如下:
#coding:utf-8 import sys reload(sys) sys.setdefaultencoding("utf-8") from multiprocessing import Pool,Queue,Process import multiprocessing as mp import time,random import os import codecs import jieba.analyse jieba.analyse.set_stop_words("yy_stop_words.txt") def extract_keyword(input_string): #print("Do task by process {proc}".format(proc=os.getpid())) tags = jieba.analyse.extract_tags(input_string, topK=100) #print("key words:{kw}".format(kw=" ".join(tags))) return tags #def parallel_extract_keyword(input_string,out_file): def parallel_extract_keyword(input_string): #print("Do task by process {proc}".format(proc=os.getpid())) tags = jieba.analyse.extract_tags(input_string, topK=100) #time.sleep(random.random()) #print("key words:{kw}".format(kw=" ".join(tags))) #o_f = open(out_file,'w') #o_f.write(" ".join(tags)+"\n") return tags if __name__ == "__main__": data_file = sys.argv[1] with codecs.open(data_file) as f: lines = f.readlines() f.close() out_put = data_file.split('.')[0] +"_tags.txt" t0 = time.time() for line in lines: parallel_extract_keyword(line) #parallel_extract_keyword(line,out_put) #extract_keyword(line) print("串行处理花费时间{t}".format(t=time.time()-t0)) pool = Pool(processes=int(mp.cpu_count()*0.7)) t1 = time.time() #for line in lines: #pool.apply_async(parallel_extract_keyword,(line,out_put)) #保存处理的结果,可以方便输出到文件 res = pool.map(parallel_extract_keyword,lines) #print("Print keywords:") #for tag in res: #print(" ".join(tag)) pool.close() pool.join() print("并行处理花费时间{t}s".format(t=time.time()-t1))
运行:
python data_process_by_multiprocess.py message.txt
message.txt是每行是一个文档,共581行,7M的数据
运行时间:
不使用sleep来挂起进程,也就是把time.sleep(random.random())注释掉,运行可以大大节省时间。
以上这篇python多进程提取处理大量文本的关键词方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python多进程提取处理大量文本的关键词方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]