使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络。
代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如【5,5,1,32】,前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下:
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets("MNSIT_data/", one_hot=True) sess = tf.InteractiveSession() # In[2]: #由于W和b在各层中均要用到,先定义乘函数。 #tf.truncated_normal:截断正态分布,即限制范围的正态分布 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) # In[7]: #bias初始化值0.1. def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # In[12]: #tf.nn.conv2d:二维的卷积 #conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,data_format=None, name=None) #filter:A 4-D tensor of shape # `[filter_height, filter_width, in_channels, out_channels]` #strides:步长,都是1表示所有点都不会被遗漏。1-D 4值,表示每歌dim的移动步长。 # padding:边界的处理方式,“SAME"、"VALID”可选 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #tf.nn.max_pool:最大值池化函数,即求2*2区域的最大值,保留最显著的特征。 #max_pool(value, ksize, strides, padding, data_format="NHWC", name=None) #ksize:池化窗口的尺寸 #strides:[1,2,2,1]表示横竖方向步长为2 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding='SAME') x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) #tf.reshape:tensor的变形函数。 #-1:样本数量不固定 #28,28:新形状的shape #1:颜色通道数 x_image = tf.reshape(x, [-1, 28, 28, 1]) #卷积层包含三部分:卷积计算、激活、池化 #[5,5,1,32]表示卷积核的尺寸为5×5, 颜色通道为1, 有32个卷积核 W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #经过2次2×2的池化后,图像的尺寸变为7×7,第二个卷积层有64个卷积核,生成64类特征,因此,卷积最后输出为7×7×64. #tensor进入全连接层之前,先将64张二维图像变形为1维图像,便于计算。 W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #对全连接层做dropot keep_prob = tf.placeholder(tf.float32) h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob) #又一个全连接后foftmax分类 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_dropout, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1])) #AdamOptimizer:Adam优化函数 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) #训练,并且每100个batch计算一次精度 tf.global_variables_initializer().run() for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0}) print("step %d, training accuracy %g" %(i, train_accuracy)) train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) #在测试集上测试 print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))
注意的是书上开始运行的代码是tf.global_variables_initializer().run(),但是在敲到代码中就会报错,也不知道为什么,可能是因为版本的问题吧,上网搜了一下,改为sess.run(tf.initialiaze_all_variables)即可。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
tensorflow,卷积网络
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“tensorflow实现简单的卷积网络”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]