TensorFlow提供了TFRecords的格式来统一存储数据,理论上,TFRecords可以存储任何形式的数据。
TFRecords文件中的数据都是通过tf.train.Example Protocol Buffer的格式存储的。以下的代码给出了tf.train.Example的定义。
message Example { Features features = 1; }; message Features { map<string, Feature> feature = 1; }; message Feature { oneof kind { BytesList bytes_list = 1; FloatList float_list = 2; Int64List int64_list = 3; } };
下面将介绍如何生成和读取tfrecords文件:
首先介绍tfrecords文件的生成,直接上代码:
from random import shuffle import numpy as np import glob import tensorflow as tf import cv2 import sys import os # 因为我装的是CPU版本的,运行起来会有'warning',解决方法入下,眼不见为净~ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' shuffle_data = True image_path = '/path/to/image/*.jpg' # 取得该路径下所有图片的路径,type(addrs)= list addrs = glob.glob(image_path) # 标签数据的获得具体情况具体分析,type(labels)= list labels = ... # 这里是打乱数据的顺序 if shuffle_data: c = list(zip(addrs, labels)) shuffle(c) addrs, labels = zip(*c) # 按需分割数据集 train_addrs = addrs[0:int(0.7*len(addrs))] train_labels = labels[0:int(0.7*len(labels))] val_addrs = addrs[int(0.7*len(addrs)):int(0.9*len(addrs))] val_labels = labels[int(0.7*len(labels)):int(0.9*len(labels))] test_addrs = addrs[int(0.9*len(addrs)):] test_labels = labels[int(0.9*len(labels)):] # 上面不是获得了image的地址么,下面这个函数就是根据地址获取图片 def load_image(addr): # A function to Load image img = cv2.imread(addr) img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_CUBIC) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 这里/255是为了将像素值归一化到[0,1] img = img / 255. img = img.astype(np.float32) return img # 将数据转化成对应的属性 def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) # 下面这段就开始把数据写入TFRecods文件 train_filename = '/path/to/train.tfrecords' # 输出文件地址 # 创建一个writer来写 TFRecords 文件 writer = tf.python_io.TFRecordWriter(train_filename) for i in range(len(train_addrs)): # 这是写入操作可视化处理 if not i % 1000: print('Train data: {}/{}'.format(i, len(train_addrs))) sys.stdout.flush() # 加载图片 img = load_image(train_addrs[i]) label = train_labels[i] # 创建一个属性(feature) feature = {'train/label': _int64_feature(label), 'train/image': _bytes_feature(tf.compat.as_bytes(img.tostring()))} # 创建一个 example protocol buffer example = tf.train.Example(features=tf.train.Features(feature=feature)) # 将上面的example protocol buffer写入文件 writer.write(example.SerializeToString()) writer.close() sys.stdout.flush()
上面只介绍了train.tfrecords文件的生成,其余的validation,test举一反三吧。。
接下来介绍tfrecords文件的读取:
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' data_path = 'train.tfrecords' # tfrecords 文件的地址 with tf.Session() as sess: # 先定义feature,这里要和之前创建的时候保持一致 feature = { 'train/image': tf.FixedLenFeature([], tf.string), 'train/label': tf.FixedLenFeature([], tf.int64) } # 创建一个队列来维护输入文件列表 filename_queue = tf.train.string_input_producer([data_path], num_epochs=1) # 定义一个 reader ,读取下一个 record reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) # 解析读入的一个record features = tf.parse_single_example(serialized_example, features=feature) # 将字符串解析成图像对应的像素组 image = tf.decode_raw(features['train/image'], tf.float32) # 将标签转化成int32 label = tf.cast(features['train/label'], tf.int32) # 这里将图片还原成原来的维度 image = tf.reshape(image, [224, 224, 3]) # 你还可以进行其他一些预处理.... # 这里是创建顺序随机 batches(函数不懂的自行百度) images, labels = tf.train.shuffle_batch([image, label], batch_size=10, capacity=30, min_after_dequeue=10) # 初始化 init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) # 启动多线程处理输入数据 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) .... #关闭线程 coord.request_stop() coord.join(threads) sess.close()
好了,就介绍到这里。。,有什么问题可以留言。。大家一起学习。。希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“tensorflow TFRecords文件的生成和读取的方法”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]