本文研究的主要是Python编程通过pandas将数据分割成时间跨度相等的数据块的相关内容,具体如下。
先上数据,有如下dataframe格式的数据,列名分别为date、ip,我需要统计每5s内出现的ip,以及这些ip出现的频数。
ip date 0 127.0.0.21 15/Jul/2017:18:22:16 1 127.0.0.13 15/Jul/2017:18:22:16 2 127.0.0.11 15/Jul/2017:18:22:17 3 127.0.0.11 15/Jul/2017:18:22:20 4 127.0.0.21 15/Jul/2017:18:22:21 5 127.0.0.13 15/Jul/2017:18:22:22 6 127.0.0.14 15/Jul/2017:18:26:36 7 127.0.0.16 15/Jul/2017:18:32:15 8 127.0.0.11 15/Jul/2017:18:36:03
在网上找了很久但是没看到python的相关答案,但在stackoverflow找到了R语言的解法,有兴趣可以看看。
受它的启发,我用不太优雅的方式实现了我的需求,有更好解决方法的请不吝赐教:
step1: 将数据中日期格式变为标准格式
#date_ip为我的dataframe数据 date_ip['date'] = pd.to_datetime(date_ip['date'], format='%d/%b/%Y:%H:%M:%S')
step2: 将数据的开始时间、结束时间,按5s分割(由于时间段可能不是恰好是5s的倍数,为避免最后一个时间丢失,因此在最后加上5s)
frequency = 5 time_range = pd.date_range(date_ip['date'][0], date_ip['date'][date_ip.shape[0]-1] +frequency*Second(), freq='%sS'%frequency)
step3: 将date变为索引
date_ip = date_ip.set_index('date')
step4: 对每个时间段内的数据进行频数计算(由于通过标签切片时会包含头、尾数据,为避免重复计算,因此在尾部减1s)
for i in xrange(0,len(time_range)-1): print get_frequency(date_ip.loc[time_range[i]:time_range[i+1]-1*Second()])
完整的代码
import pandas as pd from pandas.tseries.offsets import Second def get_frequency(date_ip): ip_frequency = {} for i in xrange(0,date_ip.shape[0]): ip_frequency[date_ip['ip'][i]] = ip_frequency.get(date_ip['ip'][i], 0) + 1 return ip_frequency,date_ip.shape[0] if __name__ == '__main__': date_ip['date'] = pd.to_datetime(date_ip['date'], format='%d/%b/%Y:%H:%M:%S') frequency = 5 time_range = pd.date_range(date_ip['date'][0], date_ip['date'][date_ip.shape[0]-1] +frequency*Second(), freq='%sS'%frequency) date_ip = date_ip.set_index('date') for i in xrange(0, len(time_range) - 1): print get_frequency(date_ip.loc[time_range[i]:time_range[i + 1]-1*Second()])
文章开头数据运行结果:
({'127.0.0.21' : 1, '127.0.0.13' : 1, '127.0.0.11' : 2}, 4) ({'127.0.0.21': 1, '127.0.0.13': 1}, 2) ({'127.0.0.14': 1}, 1) ({'127.0.0.16': 1}, 1) ({'127.0.0.11': 1}, 1)
总结
以上就是本文关于python使用pandas实现数据分割实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“python使用pandas实现数据分割实例代码”评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]