本文实例为大家分享了python编写决策树源代码,供大家参考,具体内容如下
因为最近实习的需要,所以用python里的sklearn包重新写了一次决策树。
工具:sklearn,将dot文件转化为pdf格式(是为了将形成的决策树可视化)graphviz-2.38,下载解压之后将其中的bin文件的目录添加进环境变量
源代码如下:
from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import preprocessing from sklearn.externals.six import StringIO from xml.sax.handler import feature_external_ges from numpy.distutils.fcompiler import dummy_fortran_file # Read in the csv file and put features into list of dict and list of class label allElectronicsData = open(r'E:/DeepLearning/resources/AllElectronics.csv', 'rt') reader = csv.reader(allElectronicsData) headers = next(reader) featureList = [] lableList = [] for row in reader: lableList.append(row[len(row)-1]) rowDict = {} #不包括len(row)-1 for i in range(1,len(row)-1): rowDict[headers[i]] = row[i] featureList.append(rowDict) print(featureList) vec = DictVectorizer() dummX = vec.fit_transform(featureList).toarray() print(str(dummX)) lb = preprocessing.LabelBinarizer() dummY = lb.fit_transform(lableList) print(str(dummY)) #entropy=>ID3 clf = tree.DecisionTreeClassifier(criterion='entropy') clf = clf.fit(dummX, dummY) print("clf:"+str(clf)) #可视化tree with open("resultTree.dot",'w')as f: f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(),out_file = f) #对于新的数据怎样来查看它的分类 oneRowX = dummX[0,:] print("oneRowX: "+str(oneRowX)) newRowX = oneRowX newRowX[0] = 1 newRowX[2] = 0 predictedY = clf.predict(newRowX) print("predictedY: "+ str(predictedY))
这里的AllElectronics.csv,形式如下图所示:
今天早上好不容易将jdk、eclipse以及pydev装进linux,但是,但是,但是,想装numpy的时候,总是报错,发现是没有gcc,然后又去装gcc,真是醉了,到现在gcc还是没有装成功,再想想方法
python,决策树
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]