通过本篇内容给大家介绍一下Python实现金融数据可视化中两列数据的提取、分别画、双坐标轴、双图、两种不同的图等代码写法和思路总结。
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt np.random.seed(2000) y = np.random.standard_normal((20,2)) # print(y) ''' 不同的求和 print(y.cumsum()) print(y.sum(axis=0)) print(y.cumsum(axis=0)) ''' # 绘图 plt.figure(figsize=(7,4)) plt.plot(y.cumsum(axis=0),linewidth=2.5) plt.plot(y.cumsum(axis=0),'bo') plt.grid(True) plt.axis("tight") plt.xlabel('index') plt.ylabel('values') plt.title('a simple plot') plt.show()
2.下面分别提取两组数据,进行绘图。
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt np.random.seed(2000) date = np.random.standard_normal((20,2)) y = date.cumsum(axis=0) print(y) # 重点下面两种情况的区别 print(y[1]) # 取得是 第1行的数据 [-0.37003581 1.74900181] print(y[:,0]) # 取得是 第1列的数据 [ 1.73673761 -0.37003581 0.21302575 0.35026529 ... # 绘图 plt.plot(y[:,0],lw=2.5,label="1st",color='blue') plt.plot(y[:,1],lw=2.5,label="2st",color='red') plt.plot(y,'ro') # 添加细节 plt.title("A Simple Plot",size=20,color='red') plt.xlabel('Index',size=20) plt.ylabel('Values',size=20) # plt.axis('tight') plt.xlim(-1,21) plt.ylim(np.min(y)-1,np.max(y)+1) # 添加图例 plt.legend(loc=0) plt.show()
3.双坐标轴。
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt np.random.seed(2000) date = np.random.standard_normal((20,2)) y = date.cumsum(axis=0) y[:,0]=y[:,0]*100 fig,ax1 = plt.subplots() plt.plot(y[:,0],'b',label="1st") plt.plot(y[:,0],'ro') plt.grid(True) plt.axis('tight') plt.xlabel("Index") plt.ylabel('Values of 1st') plt.title("This is double axis label") plt.legend(loc=0) ax2=ax1.twinx() plt.plot(y[:,1],'g',label="2st") plt.plot(y[:,1],'r*') plt.ylabel("Values of 2st") plt.legend(loc=0) plt.show()
4. 分为两个图绘画。
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt np.random.seed(2000) date = np.random.standard_normal((20,2)) y = date.cumsum(axis=0) y[:,0]=y[:,0]*100 plt.figure(figsize=(7,5)) # 确定图片大小 plt.subplot(211) # 确定第一个图的位置 (行,列,第几个)两行一列第一个图 plt.plot(y[:,0],'b',label="1st") plt.plot(y[:,0],'ro') plt.grid(True) plt.axis('tight') plt.xlabel("Index") plt.ylabel('Values of 1st') plt.title("This is double axis label") plt.legend(loc=0) plt.subplot(212) # 确定第一个图的位置 plt.plot(y[:,1],'g',label="2st") plt.plot(y[:,1],'r*') plt.ylabel("Values of 2st") plt.legend(loc=0) plt.show()
5.在两个图层中绘制两种不同的图(直线图立方图)
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt np.random.seed(2000) date = np.random.standard_normal((20,2)) y = date.cumsum(axis=0) y[:,0]=y[:,0]*100 plt.figure(figsize=(7,5)) # 确定图片大小 plt.subplot(121) # 确定第一个图的位置 plt.plot(y[:,0],'b',label="1st") plt.plot(y[:,0],'ro') plt.grid(True) plt.axis('tight') plt.xlabel("Index") plt.ylabel('Values',size=20) plt.title("1st date set") plt.legend(loc=0) plt.subplot(122) # 确定第一个图的位置 plt.bar(np.arange(len(y[:,1])),y[:,1],width = 0.5,color='g',label="2nd") # 直方图的画法 plt.grid(True) plt.xlabel("Index") plt.title('2nd date set') plt.legend(loc=0) plt.show()
以上就是本次交给大家的Python制作金融数据等用到的图形化界面代码写法。
标签:
Python,金融,数据,可视化
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python金融数据可视化汇总”评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年04月27日
2025年04月27日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]