本文实例讲述了Python基于回溯法子集树模板实现图的遍历功能。分享给大家供大家参考,具体如下:

问题

一个图:

A --> B
A --> C
B --> C
B --> D
B --> E
C --> A
C --> D
D --> C
E --> F
F --> C
F --> D

从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径。请找出所有可能的路径。

分析

将这个图可视化如下:

Python基于回溯法子集树模板实现图的遍历功能示例

本问题涉及到图,那首先要考虑图用那种存储结构表示。邻接矩阵、邻接表、...都不太熟。

前面这篇文章https://www.jb51.net/article/122927.htm有一种最简洁的邻接表表示方式。

接下来对问题本身进行分析:

显然,问题的解的长度是固定的,亦即所有的路径长度都是固定的:n(不回到出发节点) 或 n+1(回到出发节点)

每个节点,都有各自的邻接节点。

对某个节点来说,它的所有邻接节点,可以看作这个节点的状态空间。遍历其状态空间,剪枝,深度优先递归到下一个节点。搞定!

至此,很明显套用回溯法子集树模板。

代码:

'''
图的遍历
从一个节点出发,不重复地经过所有其它节点后,回到出发节点。找出所有的路径
'''
# 用邻接表表示图
n = 6 # 节点数
a,b,c,d,e,f = range(n) # 节点名称
graph = [
  {b,c},
  {c,d,e},
  {a,d},
  {c},
  {f},
  {c,d}
]
x = [0]*(n+1) # 一个解(n+1元数组,长度固定)
X = []     # 一组解
# 冲突检测
def conflict(k):
  global n,graph,x
  # 第k个节点,是否前面已经走过
  if k < n and x[k] in x[:k]:
    return True
  # 回到出发节点
  if k == n and x[k] != x[0]:
    return True
  return False # 无冲突
# 图的遍历
def dfs(k): # 到达(解x的)第k个节点
  global n,a,b,c,d,e,f,graph,x,X
  if k > n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n)
    print(x)
    #X.append(x[:])
  else:
    for node in graph[x[k-1]]: # 遍历节点x[k]的邻接节点(x[k]的所有状态)
      x[k] = node
      if not conflict(k): # 剪枝
        dfs(k+1)
# 测试
x[0] = e # 出发节点
dfs(1)  # 开始处理解x中的第2个节点

效果图:

Python基于回溯法子集树模板实现图的遍历功能示例

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

标签:
Python,回溯法,子集树模板,图的遍历

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com