pre_file.py
#-*-coding:utf-8-*- import MySQLdb import MySQLdb as mdb import os,sys,string import jieba import codecs reload(sys) sys.setdefaultencoding('utf-8') #连接数据库 try: conn=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8') except Exception,e: print e sys.exit() #获取cursor对象操作数据库 cursor=conn.cursor(mdb.cursors.DictCursor) #cursor游标 #获取内容 sql='SELECT link,content FROM test1.spider;' cursor.execute(sql) #execute()方法,将字符串当命令执行 data=cursor.fetchall()#fetchall()接收全部返回结果行 f=codecs.open('C:\Users\kk\Desktop\hello-result1.txt','w','utf-8') for row in data: #row接收结果行的每行数据 seg='/'.join(list(jieba.cut(row['content'],cut_all='False'))) f.write(row['link']+' '+seg+'\r\n') f.close() cursor.close() #提交事务,在插入数据时必须
jiansuo.py
#-*-coding:utf-8-*- import sys import string import MySQLdb import MySQLdb as mdb import gensim from gensim import corpora,models,similarities from gensim.similarities import MatrixSimilarity import logging import codecs reload(sys) sys.setdefaultencoding('utf-8') con=mdb.connect(host='127.0.0.1',user='root',passwd='kongjunli',db='test1',charset='utf8') with con: cur=con.cursor() cur.execute('SELECT * FROM cutresult_copy') rows=cur.fetchall() class MyCorpus(object): def __iter__(self): for row in rows: yield str(row[1]).split('/') #开启日志 logging.basicConfig(format='%(asctime)s:%(levelname)s:%(message)s',level=logging.INFO) Corp=MyCorpus() #将网页文档转化为tf-idf dictionary=corpora.Dictionary(Corp) corpus=[dictionary.doc2bow(text) for text in Corp] #将文档转化为词袋模型 #print corpus tfidf=models.TfidfModel(corpus)#使用tf-idf模型得出文档的tf-idf模型 corpus_tfidf=tfidf[corpus]#计算得出tf-idf值 #for doc in corpus_tfidf: #print doc ### ''' q_file=open('C:\Users\kk\Desktop\q.txt','r') query=q_file.readline() q_file.close() vec_bow=dictionary.doc2bow(query.split(' '))#将请求转化为词带模型 vec_tfidf=tfidf[vec_bow]#计算出请求的tf-idf值 #for t in vec_tfidf: # print t ''' ### query=raw_input('Enter your query:') vec_bow=dictionary.doc2bow(query.split()) vec_tfidf=tfidf[vec_bow] index=similarities.MatrixSimilarity(corpus_tfidf) sims=index[vec_tfidf] similarity=list(sims) print sorted(similarity,reverse=True)
encodings.xml
<"1.0" encoding="UTF-8"?> <project version="4"> <component name="Encoding"> <file url="PROJECT" charset="UTF-8" /> </component> </project>
misc.xml
<"1.0" encoding="UTF-8"?> <project version="4"> <component name="ProjectLevelVcsManager" settingsEditedManually="false"> <OptionsSetting value="true" id="Add" /> <OptionsSetting value="true" id="Remove" /> <OptionsSetting value="true" id="Checkout" /> <OptionsSetting value="true" id="Update" /> <OptionsSetting value="true" id="Status" /> <OptionsSetting value="true" id="Edit" /> <ConfirmationsSetting value="0" id="Add" /> <ConfirmationsSetting value="0" id="Remove" /> </component> <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7.11 (C:\Python27\python.exe)" project-jdk-type="Python SDK" /> </project>
modules.xml
<"1.0" encoding="UTF-8"?> <project version="4"> <component name="ProjectModuleManager"> <modules> <module fileurl="file://$PROJECT_DIR$/.idea/爬虫练习代码.iml" filepath="$PROJECT_DIR$/.idea/爬虫练习代码.iml" /> </modules> </component> </project>
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com
暂无“Python使用gensim计算文档相似性”评论...
更新日志
2025年01月06日
2025年01月06日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]