LRU:least recently used,最近最少使用算法。它的使用场景是:在有限的空间中存储对象时,当空间满时,会按一定的原则删除原有的对象,常用的原则(算法)有LRU,FIFO,LFU等。在计算机的Cache硬件,以及主存到虚拟内存的页面置换,还有Redis缓存系统中都用到了该算法。我在一次面试和一个笔试时,也遇到过这个问题。
LRU的算法是比较简单的,当对key进行访问时(一般有查询,更新,增加,在get()和set()两个方法中实现即可)时,将该key放到队列的最前端(或最后端)就行了,这样就实现了对key按其最后一次访问的时间降序(或升序)排列,当向空间中增加新对象时,如果空间满了,删除队尾(或队首)的对象。
在Python中,可以使用collections.OrderedDict很方便的实现LRU算法,当然,如果你想不到用OrderedDict,那可以用dict+list来实现。本文主要参考了LRU CACHE IN PYTHON,写的非常好,既实现了功能,又简洁易读。方法一的代码与参考文章基本相同,方法二是我自己想出来的,比较繁琐一些,其实OrderedDict本身也是类似的这种机制来实现的有序。
不过,下面的实现是有问题的,这个cache的key:value键值对中,value只能是不可变类型。因为,如果value是可变类型,那对于同一个key,所有调用get(key)方法返回的value都是指向同一个可变对象的,当修改其中一个value时,那所有的value都会被修改了,即使你没有调用set()方法也会这样。这是我们不希望看到的。解决方法我想到了两种,一是可变对象序列化后再存储,即将可变对象转为不可变对象;二是仍存储可变对象,但get()时,返回一个深拷贝,这样每个get()调用返回的对象就不会相互影响了。推荐第一种方法。另外,对于key,推荐使用str/unicode类型。
当并发时,还会存在一个问题,因为这涉及到对公共资源的写操作,所以必须要对set()加锁。其实,在并发情况下,所有对公共资源的写操作都要加锁。如果不存在并发的情况,只有单线程,那可以不加锁。
方法一:用OrderedDict实现(推荐)
复制代码 代码如下:
from collections import OrderedDict
class LRUCache(OrderedDict):
'''不能存储可变类型对象,不能并发访问set()'''
def __init__(self,capacity):
self.capacity = capacity
self.cache = OrderedDict()
def get(self,key):
if self.cache.has_key(key):
value = self.cache.pop(key)
self.cache[key] = value
else:
value = None
return value
def set(self,key,value):
if self.cache.has_key(key):
value = self.cache.pop(key)
self.cache[key] = value
else:
if len(self.cache) == self.capacity:
self.cache.popitem(last = False) #pop出第一个item
self.cache[key] = value
else:
self.cache[key] = value
测试代码如下
复制代码 代码如下:
c = LRUCache(5)
for i in range(5,10):
c.set(i,10*i)
print c.cache, c.cache.keys()
c.get(5)
c.get(7)
print c.cache, c.cache.keys()
c.set(10,100)
print c.cache, c.cache.keys()
c.set(9,44)
print c.cache, c.cache.keys()
输出如下
复制代码 代码如下:
OrderedDict([(5, 50), (6, 60), (7, 70), (8, 80), (9, 90)]) [5, 6, 7, 8, 9]
OrderedDict([(6, 60), (8, 80), (9, 90), (5, 50), (7, 70)]) [6, 8, 9, 5, 7]
OrderedDict([(8, 80), (9, 90), (5, 50), (7, 70), (10, 100)]) [8, 9, 5, 7, 10]
OrderedDict([(8, 80), (5, 50), (7, 70), (10, 100), (9, 90)]) [8, 5, 7, 10, 9]
方法二:用dict+list实现(不推荐)
复制代码 代码如下:
class LRUCache(object):
'''不能存储可变类型对象,不能并发访问set()'''
def __init__(self,capacity):
self.l = []
self.d = {}
self.capacity = capacity
def get(self,key):
if self.d.has_key(key):
value = self.d[key]
self.l.remove(key)
self.l.insert(0,key)
else:
value = None
return value
def set(self,key,value):
if self.d.has_key(key):
self.l.remove(key)
elif len(self.d) == self.capacity:
oldest_key = self.l.pop()
self.d.pop(oldest_key)
self.d[key] = value
self.l.insert(0, key)
测试代码如下
复制代码 代码如下:
c = LRUCache(5)
for i in range(5,10):
c.set(i,10*i)
print c.d,c.l
c.get(5)
c.get(7)
print c.d,c.l
c.set(10,100)
print c.d,c.l
c.set(9,44)
print c.d,c.l
输出为
复制代码 代码如下:
{8: 80, 9: 90, 5: 50, 6: 60, 7: 70} [9, 8, 7, 6, 5]
{8: 80, 9: 90, 5: 50, 6: 60, 7: 70} [7, 5, 9, 8, 6]
{5: 50, 7: 70, 8: 80, 9: 90, 10: 100} [10, 7, 5, 9, 8]
{5: 50, 7: 70, 8: 80, 9: 44, 10: 100} [9, 10, 7, 5, 8]
Python,LRU算法
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]