本文实例讲述了python计算牛顿迭代多项式的方法。分享给大家供大家参考。具体实现方法如下:

''' p = evalPoly(a,xData,x).
  Evaluates Newton's polynomial p at x. The coefficient
  vector 'a' can be computed by the function 'coeffts'.
  a = coeffts(xData,yData).
  Computes the coefficients of Newton's polynomial.
'''  
def evalPoly(a,xData,x):
  n = len(xData) - 1 # Degree of polynomial
  p = a[n]
  for k in range(1,n+1):
    p = a[n-k] + (x -xData[n-k])*p
  return p
def coeffts(xData,yData):
  m = len(xData) # Number of data points
  a = yData.copy()
  for k in range(1,m):
    a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1])
  return a

希望本文所述对大家的Python程序设计有所帮助。

标签:
python,计算,牛顿迭代多项式

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“python计算牛顿迭代多项式实例分析”

暂无“python计算牛顿迭代多项式实例分析”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。