用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那么在函数内需要捕获所有异常, 输出一行警告并退出. 代码可能一开始看起来是这样的
def read_file(): try: f = open('yui', 'r') print ''.join(f.readlines()) except: print 'error occurs while reading file' finally: f.close()
不过这显然无法运作, 因为 f 是在 try 块中定义的, 而在 finally 中无法引用.
如果将 f 提取到 try 块外部, 如
def read_file(): f = open('azusa', 'r') try: print ''.join(f.readlines()) except: print 'error occurs while reading file' finally: f.close()
那么, 问题在于当打开文件失败, 抛出异常将不会被捕获.
挫一点的方法自然是, 再套一层 try 吧
def read_file(): try: f = open('sawako', 'r') try: print ''.join(f.readlines()) except: print 'error occurs while reading file' finally: f.close() except: print 'error occurs while reading file'
当然这不仅仅是多一层缩进挫了, 连警告输出都白白多一次呢.
正规一点的方式是, 使用 Python 引入的 with 结构来解决, 如
def readFile(): try: with open('mio', 'r') as f: print ''.join(f.readlines()) except: print 'error occurs while reading file'
当文件打开失败时, 异常自然会被 except 到; 否则, 在 with 块结束之后, 打开的文件将自动关闭.
除了打开文件, 还有其它这样可以用于 with 的东西么"htmlcode">
class Test: def __init__(self): print 'init' def __enter__(self): print 'enter' return self def __exit__(self, except_type, except_obj, tb): print except_type print except_obj import traceback print ''.join(traceback.format_tb(tb)) print 'exit' return True with Test() as t: raise ValueError('kon!')
执行这一段代码, 输出将会是
init enter <type 'exceptions.ValueError'> kon! File "test.py", line 17, in <module> raise ValueError('kon!') exit
__exit__ 函数接受三个参数, 分别是异常对象类型, 异常对象和调用栈. 如果 with 块正常退出, 那么这些参数将都是 None . 返回 True 表示发生的异常已被处理, 不再继续向外抛出.
简单的介绍到此为止, 详细的情况可以参考 PEP 343 (这数字真不错, 7 3 ).
下面介绍下 with 语句的实例用法 & 高级用法:
Python高端、大气、上档次的with语句
在说with语句之前,先看看一段简单的代码吧
lock = threading.Lock() ... lock.acquire() elem = heapq.heappop(heap) lock.release()
很简单直观,多个线程共用一个优先级队列的时候,首先先用互斥锁lock.acquire()把优先级队列锁上,然后取元素,再然后lock.release()释放这个锁。
虽然看似非常符合逻辑的一个过程,但是里面隐藏着一个巨大的bug:当heap里面没有元素的时候,会抛出一个IndexError异常,再然后堆栈回滚,再然后lock.release()根本不会执行,这个锁就永远得不到释放,因此就发生了喜闻乐见的死锁问题。这个也是很多大神们讨厌异常的原因。经典Java风格的解决方案就是
lock = threading.Lock() ... lock.acquire() try: elem = heapq.heappop(heap) finally: lock.release()
这个虽然可以,但是怎么看怎么dirty,和Python优雅、简单的风格出入很大。其实,自从Python2.5开始引入了with语句,一切就变得非常简单:
lock = threading.Lock() ... with lock: elem = heapq.heappop(heap)
在此无论以何种方式离开with语句的代码块,锁都会被释放。
with语句的设计目的就是为了使得之前需要通过try...finally解决的清理资源问题变得简单、清晰,它的的用法是
with expression [as variable]: with-block
其中expression返回一个叫做「context manager」的对象,然后这个对象被赋给variable(如果有的话)。「context manager」对象有两个方法,分别是__enter__()和__exit__(),很明显一个在进入with-block时调用,一个离开with-block的时候调用。
这样的对象不需要自己去实现,在Python标准库里面很多API都是已经实现了这两个方法,最常见的一个例子就是读写文件的open语句。
with open('1.txt', encoding = 'utf-8') as fp: lines = fp.readlines()
无论是正常离开还是因为异常原因离开with语句块,打开的文件资源总是会释放。
接下去讨论一下with语句配合contextlib库的一些比较实用的方法,比如需要同时打开两个文件,一个读一个写,这个时候就可以这样写:
from contextlib import nested ... with nested(open('in.txt'), open('out.txt', 'w')) as (fp_in, fp_out): ...
这样就可以省掉两个with的语句的嵌套了,另外如果遇到一些还没有支持「context manager」的API呢?比如urllib.request.urlopen(),这个返回的对象因为不是「context manager」,结束的时候还需要自己去调用close方法。
类似这种API,contextlib提供了一个叫做closing方法,它会在离开with语句的时候,自动调用对象的close方法,因此urlopen也可以这样写:
from contextlib import closing ... with closing(urllib.request.urlopen('http://www.yahoo.com')) as f: for line in f: sys.stdout.write(line)
用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那么在函数内需要捕获所有异常, 输出一行警告并退出. 代码可能一开始看起来是这样的
def read_file(): try: f = open('yui', 'r') print ''.join(f.readlines()) except: print 'error occurs while reading file' finally: f.close()
不过这显然无法运作, 因为 f 是在 try 块中定义的, 而在 finally 中无法引用.
如果将 f 提取到 try 块外部, 如
def read_file(): f = open('azusa', 'r') try: print ''.join(f.readlines()) except: print 'error occurs while reading file' finally: f.close()
那么, 问题在于当打开文件失败, 抛出异常将不会被捕获.
挫一点的方法自然是, 再套一层 try 吧
def read_file(): try: f = open('sawako', 'r') try: print ''.join(f.readlines()) except: print 'error occurs while reading file' finally: f.close() except: print 'error occurs while reading file'
当然这不仅仅是多一层缩进挫了, 连警告输出都白白多一次呢.
正规一点的方式是, 使用 Python 引入的 with 结构来解决, 如
def readFile(): try: with open('mio', 'r') as f: print ''.join(f.readlines()) except: print 'error occurs while reading file'
当文件打开失败时, 异常自然会被 except 到; 否则, 在 with 块结束之后, 打开的文件将自动关闭.
除了打开文件, 还有其它这样可以用于 with 的东西么"htmlcode">
class Test: def __init__(self): print 'init' def __enter__(self): print 'enter' return self def __exit__(self, except_type, except_obj, tb): print except_type print except_obj import traceback print ''.join(traceback.format_tb(tb)) print 'exit' return True with Test() as t: raise ValueError('kon!')
执行这一段代码, 输出将会是
init enter <type 'exceptions.ValueError'> kon! File "test.py", line 17, in <module> raise ValueError('kon!') exit
__exit__ 函数接受三个参数, 分别是异常对象类型, 异常对象和调用栈. 如果 with 块正常退出, 那么这些参数将都是 None . 返回 True 表示发生的异常已被处理, 不再继续向外抛出.
简单的介绍到此为止, 详细的情况可以参考 PEP 343 (这数字真不错, 7 3 ).
下面介绍下 with 语句的实例用法 & 高级用法:
Python高端、大气、上档次的with语句
在说with语句之前,先看看一段简单的代码吧
lock = threading.Lock() ... lock.acquire() elem = heapq.heappop(heap) lock.release()
很简单直观,多个线程共用一个优先级队列的时候,首先先用互斥锁lock.acquire()把优先级队列锁上,然后取元素,再然后lock.release()释放这个锁。
虽然看似非常符合逻辑的一个过程,但是里面隐藏着一个巨大的bug:当heap里面没有元素的时候,会抛出一个IndexError异常,再然后堆栈回滚,再然后lock.release()根本不会执行,这个锁就永远得不到释放,因此就发生了喜闻乐见的死锁问题。这个也是很多大神们讨厌异常的原因。经典Java风格的解决方案就是
lock = threading.Lock() ... lock.acquire() try: elem = heapq.heappop(heap) finally: lock.release()
这个虽然可以,但是怎么看怎么dirty,和Python优雅、简单的风格出入很大。其实,自从Python2.5开始引入了with语句,一切就变得非常简单:
lock = threading.Lock() ... with lock: elem = heapq.heappop(heap)
在此无论以何种方式离开with语句的代码块,锁都会被释放。
with语句的设计目的就是为了使得之前需要通过try...finally解决的清理资源问题变得简单、清晰,它的的用法是
with expression [as variable]: with-block
其中expression返回一个叫做「context manager」的对象,然后这个对象被赋给variable(如果有的话)。「context manager」对象有两个方法,分别是__enter__()和__exit__(),很明显一个在进入with-block时调用,一个离开with-block的时候调用。
这样的对象不需要自己去实现,在Python标准库里面很多API都是已经实现了这两个方法,最常见的一个例子就是读写文件的open语句。
with open('1.txt', encoding = 'utf-8') as fp: lines = fp.readlines()
无论是正常离开还是因为异常原因离开with语句块,打开的文件资源总是会释放。
接下去讨论一下with语句配合contextlib库的一些比较实用的方法,比如需要同时打开两个文件,一个读一个写,这个时候就可以这样写:
from contextlib import nested ... with nested(open('in.txt'), open('out.txt', 'w')) as (fp_in, fp_out): ...
这样就可以省掉两个with的语句的嵌套了,另外如果遇到一些还没有支持「context manager」的API呢?比如urllib.request.urlopen(),这个返回的对象因为不是「context manager」,结束的时候还需要自己去调用close方法。
类似这种API,contextlib提供了一个叫做closing方法,它会在离开with语句的时候,自动调用对象的close方法,因此urlopen也可以这样写:
from contextlib import closing ... with closing(urllib.request.urlopen('http://www.yahoo.com')) as f: for line in f: sys.stdout.write(line)
Python
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]