实例的背景说明
假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:
Models.py 内容如下:
from django.db import models class Province(models.Model): name = models.CharField(max_length=10) def __unicode__(self): return self.name class City(models.Model): name = models.CharField(max_length=5) province = models.ForeignKey(Province) def __unicode__(self): return self.name class Person(models.Model): firstname = models.CharField(max_length=10) lastname = models.CharField(max_length=10) visitation = models.ManyToManyField(City, related_name = "visitor") hometown = models.ForeignKey(City, related_name = "birth") living = models.ForeignKey(City, related_name = "citizen") def __unicode__(self): return self.firstname + self.lastname
注1:创建的app名为“QSOptimize”
注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
如果我们想要获得所有家乡是湖北的人,最无脑的做法是先获得湖北省,再获得湖北的所有城市,最后获得故乡是这个城市的人。就像这样:
> hb = Province.objects.get(name__iexact=u"湖北省") > people = [] > for city in hb.city_set.all(): ... people.extend(city.birth.all()) ...
显然这不是一个明智的选择,因为这样做会导致1+(湖北省城市数)次SQL查询。反正是个反例,导致的查询和获得掉结果就不列出来了。
prefetch_related() 或许是一个好的解决方法,让我们来看看。
> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省") > people = [] > for city in hb.city_set.all(): ... people.extend(city.birth.all()) ...
因为是一个深度为2的prefetch,所以会导致3次SQL查询:
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`name` LIKE '湖北省' ; SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` WHERE `QSOptimize_city`.`province_id` IN (1); SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);
嗯…看上去不错,但是3次查询么?倒过来查询可能会更简单?
> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省")) SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_person` INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`) INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) WHERE `QSOptimize_province`.`name` LIKE '湖北省'; +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ | id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name | +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ | 1 | 张 | 三 | 3 | 1 | 3 | 十堰市 | 1 | 1 | 湖北省 | | 2 | 李 | 四 | 1 | 3 | 1 | 武汉市 | 1 | 1 | 湖北省 | | 3 | 王 | 麻子 | 3 | 2 | 3 | 十堰市 | 1 | 1 | 湖北省 | +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+ 3 rows in set (0.00 sec)
完全没问题。不仅SQL查询的数量减少了,python程序上也精简了。
select_related()的效率要高于prefetch_related()。因此,最好在能用select_related()的地方尽量使用它,也就是说,对于ForeignKey字段,避免使用prefetch_related()。
联用
对于同一个QuerySet,你可以同时使用这两个函数。
在我们一直使用的例子上加一个model:Order (订单)
class Order(models.Model): customer = models.ForeignKey(Person) orderinfo = models.CharField(max_length=50) time = models.DateTimeField(auto_now_add = True) def __unicode__(self): return self.orderinfo
如果我们拿到了一个订单的id 我们要知道这个订单的客户去过的省份。因为有ManyToManyField显然必须要用prefetch_related()。如果只用prefetch_related()会怎样呢?
> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1) > for city in plist.customer.visitation.all(): ... print city.province.name ...
显然,关系到了4个表:Order、Person、City、Province,根据prefetch_related()的特性就得有4次SQL查询
SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time` FROM `QSOptimize_order` WHERE `QSOptimize_order`.`id` = 1 ; SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_person` WHERE `QSOptimize_person`.`id` IN (1); SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+ | id | customer_id | orderinfo | time | +----+-------------+---------------+---------------------+ | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | +----+-------------+---------------+---------------------+ 1 row in set (0.00 sec) +----+-----------+----------+-------------+-----------+ | id | firstname | lastname | hometown_id | living_id | +----+-----------+----------+-------------+-----------+ | 1 | 张 | 三 | 3 | 1 | +----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+--------+-------------+ | 1 | 1 | 武汉市 | 1 | | 1 | 2 | 广州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ | id | name | +----+--------+ | 1 | 湖北省 | | 2 | 广东省 | +----+--------+ 2 rows in set (0.00 sec)
更好的办法是先调用一次select_related()再调用prefetch_related(),最后再select_related()后面的表
> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1) > for city in plist.customer.visitation.all(): ... print city.province.name ...
这样只会有3次SQL查询,Django会先做select_related,之后prefetch_related的时候会利用之前缓存的数据,从而避免了1次额外的SQL查询:
SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_order` INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) WHERE `QSOptimize_order`.`id` = 1 ; SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2); +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ | id | customer_id | orderinfo | time | id | firstname | lastname | hometown_id | living_id | +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ | 1 | 1 | Info of Order | 2014-08-10 17:05:48 | 1 | 张 | 三 | 3 | 1 | +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+ 1 row in set (0.00 sec) +-----------------------+----+--------+-------------+ | _prefetch_related_val | id | name | province_id | +-----------------------+----+--------+-------------+ | 1 | 1 | 武汉市 | 1 | | 1 | 2 | 广州市 | 2 | | 1 | 3 | 十堰市 | 1 | +-----------------------+----+--------+-------------+ 3 rows in set (0.00 sec) +----+--------+ | id | name | +----+--------+ | 1 | 湖北省 | | 2 | 广东省 | +----+--------+ 2 rows in set (0.00 sec)
值得注意的是,可以在调用prefetch_related之前调用select_related,并且Django会按照你想的去做:先select_related,然后利用缓存到的数据prefetch_related。然而一旦prefetch_related已经调用,select_related将不起作用。
小结
- 因为select_related()总是在单次SQL查询中解决问题,而prefetch_related()会对每个相关表进行SQL查询,因此select_related()的效率通常比后者高。
- 鉴于第一条,尽可能的用select_related()解决问题。只有在select_related()不能解决问题的时候再去想prefetch_related()。
- 你可以在一个QuerySet中同时使用select_related()和prefetch_related(),从而减少SQL查询的次数。
- 只有prefetch_related()之前的select_related()是有效的,之后的将会被无视掉。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]