Key-Value缓存有很多,用的较多的是memcache、redis,他们都是以独立服务的形式运行,在工作中有时需要嵌入一个本地的key-value缓存,当然已经有LevelDb等,但感觉还是太重量级了。
本文实现了一种超级轻量的缓存,
1、实现代码仅仅需要400行;
2、性能高效,value长度在1K时测试速度在每秒200万左右
3、缓存是映射到文件中的,所以没有malloc、free的开销,以及带来的内存泄露、内存碎片等;
4、如果服务挂掉了,重启后缓存内容继续存在;
5、如果把缓存映射到磁盘文件就算机器挂了,缓存中内容还是会存在,当然有可能会出现数据损坏的情况;
6、一定程度上实现了LRU淘汰算法,实现的LRU不是全局的只是一条链上的,所以只能说在一定程序上实现了;
7、稳定,已经在多个项目中运用,线上部署的机器有几十台,运行了大半年了没出过问题;
8、普通的缓存key、value都是字符串的形式,此缓存的key、value都可以是class、struct对象结构使用更方便;
老规矩直接上代码:
复制代码 代码如下:
template<typename K, typename V>
class HashTable
{
public:
HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal);
virtual ~HashTable();
bool Add(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
//check is exist
uint32_t nodeId = GetIdByKey(key);
if(nodeId != m_InvalidId) return false;
nodeId = GetFreeNode();
if(nodeId == m_InvalidId) return false;
uint32_t hashCode = key.HashCode();
Entry *tmpNode = m_EntryAddr + nodeId;
tmpNode->m_Key = key;
tmpNode->m_Code = hashCode;
tmpNode->m_Value = value;
uint32_t index = hashCode % m_HeadAddr->m_TableLen;
AddNodeToHead(index, nodeId);
return true;
}
bool Del(K &key)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
return RecycleNode(index, nodeId);
}
bool Set(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
(m_EntryAddr + nodeId)->m_Value = value;
return true;
}
bool Get(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
value = (m_EntryAddr + nodeId)->m_Value;
return true;
}
bool Exist(K &key)
{
AutoLock autoLock(m_MutexLock);
uint32_t nodeId = GetIdByKey(key);
if(nodeId == m_InvalidId) return false;
return true;
}
uint32_t Count()
{
AutoLock autoLock(m_MutexLock);
return m_HeadAddr->m_UsedCount;
}
//if exist set else add
bool Replace(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
if(Exist(key)) return Set(key, value);
else return Add(key, value);
}
/***********************************************
****LRU: when visit a node, move it to head ****
************************************************/
//if no empty place,recycle tail
bool LruAdd(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)
{
AutoLock autoLock(m_MutexLock);
if(Exist(key)) return false;
if(Add(key, value)) return true;
uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
uint32_t tailId = GetTailNodeId(index);
if(tailId == m_InvalidId) return false;
Entry *tmpNode = m_EntryAddr + tailId;
recyKey = tmpNode->m_Key;
recyValue = tmpNode->m_Value;
recycled = true;
RecycleNode(index, tailId);
return Add(key, value);
}
bool LruSet(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
if(Set(key, value)) return MoveToHead(key);
else return false;
}
bool LruGet(K &key, V &value)
{
AutoLock autoLock(m_MutexLock);
if(Get(key, value)) return MoveToHead(key);
else return false;
}
//if exist set else add; if add failed recycle tail than add
bool LruReplace(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)
{
AutoLock autoLock(m_MutexLock);
recycled = false;
if(Exist(key)) return LruSet(key, value);
else return LruAdd(key, value, recyKey, recyValue, recycled);
}
void Clear()
{
AutoLock autoLock(m_MutexLock);
m_HeadAddr->m_FreeBase = 0;
m_HeadAddr->m_RecycleHead = 0;
m_HeadAddr->m_UsedCount = 0;
for(uint32_t i = 0; i < m_HeadAddr->m_TableLen; ++i)
{
(m_ArrayAddr+i)->m_Head = m_InvalidId;
(m_ArrayAddr+i)->m_Tail = m_InvalidId;
}
}
int GetRowKeys(vector<K> &keys, uint32_t index)
{
AutoLock autoLock(m_MutexLock);
if(index >= m_HeadAddr->m_TableLen) return -1;
keys.clear();
keys.reserve(16);
int count = 0;
Array *tmpArray = m_ArrayAddr + index;
uint32_t nodeId = tmpArray->m_Head;
while(nodeId != m_InvalidId)
{
Entry *tmpNode = m_EntryAddr + nodeId;
keys.push_back(tmpNode->m_Key);
nodeId = tmpNode->m_Next;
++count;
}
return count;
}
void *Padding(uint32_t size)
{
AutoLock autoLock(m_MutexLock);
if(size > m_HeadSize - sizeof(TableHead)) return NULL;
else return m_HeadAddr->m_Padding;
}
private:
static const uint32_t m_InvalidId = 0xffffffff;
static const uint32_t m_HeadSize = 1024;
struct TableHead
{
uint32_t m_TableLen;
uint32_t m_NodeTotal;
uint32_t m_FreeBase;
uint32_t m_RecycleHead;
uint32_t m_UsedCount;
char m_TableName[256];
uint32_t m_Padding[0];
};
struct Array
{
uint32_t m_Head;
uint32_t m_Tail;
};
struct Entry
{
V m_Value;
K m_Key;
uint32_t m_Code;
uint32_t m_Next;
uint32_t m_Prev;
};
size_t m_MemSize;
uint8_t *m_MemAddr;
TableHead *m_HeadAddr;
Array *m_ArrayAddr;
Entry *m_EntryAddr;
ThreadMutex m_MutexLock;
bool MoveToHead(K &key);
uint32_t GetIdByKey(K &key);
void AddNodeToHead(uint32_t index, uint32_t nodeId);
bool MoveNodeToHead(uint32_t index, uint32_t nodeId);
bool RecycleNode(uint32_t index, uint32_t nodeId);
uint32_t GetTailNodeId(uint32_t index);
uint32_t GetFreeNode();
DISABLE_COPY_AND_ASSIGN(HashTable);
};
template<typename K, typename V>
HashTable<K, V>::HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal)
{
AbortAssert(tablename != NULL);
m_MemSize = m_HeadSize + tableLen*sizeof(Array) + nodeTotal*sizeof(Entry);
m_MemAddr = (uint8_t*)MemFile::Realloc(tablename, m_MemSize);
AbortAssert(m_MemAddr != NULL);
m_HeadAddr = (TableHead*)(m_MemAddr);
m_ArrayAddr = (Array*)(m_MemAddr + m_HeadSize);
m_EntryAddr = (Entry*)(m_MemAddr + m_HeadSize + tableLen*sizeof(Array));
m_HeadAddr->m_TableLen = tableLen;
m_HeadAddr->m_NodeTotal = nodeTotal;
strncpy(m_HeadAddr->m_TableName, tablename, sizeof(m_HeadAddr->m_TableName));
if(m_HeadAddr->m_UsedCount == 0)//if first use init array to invalid id
{
for(uint32_t i = 0; i < tableLen; ++i)
{
(m_ArrayAddr+i)->m_Head = m_InvalidId;
(m_ArrayAddr+i)->m_Tail = m_InvalidId;
}
m_HeadAddr->m_FreeBase = 0;
m_HeadAddr->m_RecycleHead = 0;
}
}
template<typename K, typename V>
HashTable<K, V>::~HashTable()
{
MemFile::Release(m_MemAddr, m_MemSize);
}
template<typename K, typename V>
bool HashTable<K, V>::MoveToHead(K &key)
{
uint32_t nodeId = GetIdByKey(key);
uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
return MoveNodeToHead(index, nodeId);
}
template<typename K, typename V>
uint32_t HashTable<K, V>::GetIdByKey(K &key)
{
uint32_t hashCode = key.HashCode();
uint32_t index = hashCode % m_HeadAddr->m_TableLen;
Array *tmpArray = m_ArrayAddr + index;
uint32_t nodeId = tmpArray->m_Head;
while(nodeId != m_InvalidId)
{
Entry *tmpNode = m_EntryAddr + nodeId;
if(tmpNode->m_Code == hashCode && key.Equals(tmpNode->m_Key)) break;
nodeId = tmpNode->m_Next;
}
return nodeId;
}
template<typename K, typename V>
void HashTable<K, V>::AddNodeToHead(uint32_t index, uint32_t nodeId)
{
if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return;
Array *tmpArray = m_ArrayAddr + index;
Entry *tmpNode = m_EntryAddr + nodeId;
if(m_InvalidId == tmpArray->m_Head)
{
tmpArray->m_Head = nodeId;
tmpArray->m_Tail = nodeId;
}
else
{
tmpNode->m_Next = tmpArray->m_Head;
(m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;
tmpArray->m_Head = nodeId;
}
}
template<typename K, typename V>
bool HashTable<K, V>::MoveNodeToHead(uint32_t index, uint32_t nodeId)
{
if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;
Array *tmpArray = m_ArrayAddr + index;
Entry *tmpNode = m_EntryAddr + nodeId;
//already head
if(tmpArray->m_Head == nodeId)
{
return true;
}
uint32_t nodePrev = tmpNode->m_Prev;
uint32_t nodeNext = tmpNode->m_Next;
(m_EntryAddr+nodePrev)->m_Next = nodeNext;
if(nodeNext != m_InvalidId)
{
(m_EntryAddr+nodeNext)->m_Prev = nodePrev;
}
else
{
tmpArray->m_Tail = nodePrev;
}
tmpNode->m_Prev = m_InvalidId;
tmpNode->m_Next = tmpArray->m_Head;
(m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;
tmpArray->m_Head = nodeId;
return true;
}
template<typename K, typename V>
bool HashTable<K, V>::RecycleNode(uint32_t index, uint32_t nodeId)
{
if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;
Array *tmpArray = m_ArrayAddr + index;
Entry *tmpNode = m_EntryAddr + nodeId;
uint32_t nodePrev = tmpNode->m_Prev;
uint32_t nodeNext = tmpNode->m_Next;
if(nodePrev != m_InvalidId)
{
(m_EntryAddr + nodePrev)->m_Next = nodeNext;
}
else
{
tmpArray->m_Head = nodeNext;
}
if(nodeNext != m_InvalidId)
{
(m_EntryAddr + nodeNext)->m_Prev = nodePrev;
}
else
{
tmpArray->m_Tail = nodePrev;
}
(m_EntryAddr+nodeId)->m_Next = m_HeadAddr->m_RecycleHead;
m_HeadAddr->m_RecycleHead = nodeId;
--(m_HeadAddr->m_UsedCount);
return true;
}
template<typename K, typename V>
uint32_t HashTable<K, V>::GetTailNodeId(uint32_t index)
{
if(index >= m_HeadAddr->m_TableLen) return m_InvalidId;
Array *tmpArray = m_ArrayAddr + index;
return tmpArray->m_Tail;
}
template<typename K, typename V>
uint32_t HashTable<K, V>::GetFreeNode()
{
uint32_t nodeId = m_InvalidId;
if(m_HeadAddr->m_UsedCount < m_HeadAddr->m_FreeBase)//get from recycle list
{
nodeId = m_HeadAddr->m_RecycleHead;
m_HeadAddr->m_RecycleHead = (m_EntryAddr+nodeId)->m_Next;
++(m_HeadAddr->m_UsedCount);
}
else if(m_HeadAddr->m_UsedCount < m_HeadAddr->m_NodeTotal)//get from free mem
{
nodeId = m_HeadAddr->m_FreeBase;
++(m_HeadAddr->m_FreeBase);
++(m_HeadAddr->m_UsedCount);
}
else
{
nodeId = m_InvalidId;
}
//init node
if(nodeId < m_HeadAddr->m_NodeTotal)
{
Entry *tmpNode = m_EntryAddr + nodeId;
memset(tmpNode, 0, sizeof(Entry));
tmpNode->m_Next = m_InvalidId;
tmpNode->m_Prev = m_InvalidId;
}
return nodeId;
}
keyvalue数据库
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]