我们一般通过表达式$sum来计算总和。因为MongoDB的文档有数组字段,所以可以简单的将计算总和分成两种:

1,统计符合条件的所有文档的某个字段的总和;

2,统计每个文档的数组字段里面的各个数据值的和。这两种情况都可以通过$sum表达式来完成。

以上两种情况的聚合统计,分别对应与聚合框架中的 $group 操作步骤和 $project 操作步骤。

1.$group

直接看例子吧。

Case 1

测试集合mycol中的数据如下:

{
 title: 'MongoDB Overview', 
 description: 'MongoDB is no sql database',
 by_user: 'runoob.com',
 url: 'http://www.runoob.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 100
},
{
 title: 'NoSQL Overview', 
 description: 'No sql database is very fast',
 by_user: 'runoob.com',
 url: 'http://www.runoob.com',
 tags: ['mongodb', 'database', 'NoSQL'],
 likes: 10
},
{
 title: 'Neo4j Overview', 
 description: 'Neo4j is no sql database',
 by_user: 'Neo4j',
 url: 'http://www.neo4j.com',
 tags: ['neo4j', 'database', 'NoSQL'],
 likes: 750
}

现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算

db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}])

查询结果如下:

/* 1 */
{
 "_id" : "Neo4j",
 "num_tutorial" : 1
},

/* 2 */
{
 "_id" : "runoob.com",
 "num_tutorial" : 2
}

Case 2

统计每个作者被like的总和,计算表达式:

db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])

查询结果如下;

/* 1 */
{
 "_id" : "Neo4j",
 "num_tutorial" : 750
},

/* 2 */
{
 "_id" : "runoob.com",
 "num_tutorial" : 110
}

Case 3

上面例子有些简单,我们再丰富一下,测试集合sales的数据如下:

{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }

需要完成的目标是,基于日期分组,统计每天的销售额,聚合公式为:

db.sales.aggregate(
 [
  {
  $group:
   {
   _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } },
   totalAmount: { $sum: { $multiply: [ "$price", "$quantity" ] } },
   count: { $sum: 1 }
   }
  }
 ]
)

查询结果是:

{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 150, "count" : 2 }
{ "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 45, "count" : 2 }
{ "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 20, "count" : 1 }

2.$project阶段

Case 4

假设存在一个 students 集合,其数据结构如下:

{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 }
{ "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 }
{ "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }

现在的需求是统计每个学生的 平常的测验分数总和、实验分数总和、期末其中分数总和。

db.students.aggregate([
 {
  $project: {
  quizTotal: { $sum: "$quizzes"},
  labTotal: { $sum: "$labs" },
  examTotal: { $sum: [ "$final", "$midterm" ] }
  }
 }
])

其查询输出结果如下:

{ "_id" : 1, "quizTotal" : 23, "labTotal" : 13, "examTotal" : 155 }
{ "_id" : 2, "quizTotal" : 19, "labTotal" : 16, "examTotal" : 175 }
{ "_id" : 3, "quizTotal" : 14, "labTotal" : 11, "examTotal" : 148 }

参考文献:

https://www.runoob.com/mongodb/mongodb-aggregate.html

https://docs.mongodb.com/manual/reference/operator/aggregation/sum/index.html

总结

以上所述是小编给大家介绍的MongoDB 中聚合统计计算--$SUM表达式,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

标签:
MongoDB,聚合统计计算,MongoDB,$SUM表达式

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“MongoDB 中聚合统计计算--$SUM表达式”

暂无“MongoDB 中聚合统计计算--$SUM表达式”评论...

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?