结论:
1、 200w数据,合理使用索引的情况下,单个stationId下4w数据。mongodb查询和排序的性能理想,无正则时client可以在600ms+完成查询,qps300+。有正则时client可以在1300ms+完成查询,qps140+。
2、 Mongodb的count性能比较差,非并发情况下client可以在330ms完成查询,在并发情况下则需要1-3s。可以考虑估算总数的方法,http://blog.sina.com.cn/s/blog_56545fd30101442b.html
测试环境:mongodb使用 replica set,1主2从,96G内存,版本2.6.5
Mem消耗(4个200w数据的collection):
空间消耗(测试数据最终选定的collection):
Jvm: -Xms2G -Xmx2G
Ping延迟33ms
查询都使用ReadPreference.secondaryPreferred()
无正则
1、 创建stationId, firmId复合引查询场景(200w集合,12个字段)
查询次数:20000
查询条件:多条件查询10条记录,并逐条获取记录
String key = "清泉" + r.nextInt(1000); Pattern pattern = Pattern.compile(key); BasicDBObject queryObject = new BasicDBObject("stationId", new BasicDBObject("$in", new Integer[]{20})) .append("firmId", new BasicDBObject("$gt", 5000)) .append("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))); DBCursor cursor = collection.find(queryObject).limit(10).skip(2);
并发:200
耗时:61566
单次耗时(server):124ms
Qps:324.85
2、 创建stationId, firmId复合引查询场景(200w集合,12个字段)
查询次数:20000
查询条件:多条件查询10条记录排序,并逐条获取记录
String key = "清泉" + r.nextInt(100); Pattern pattern = Pattern.compile(key); BasicDBObject queryObject = new BasicDBObject("stationId", new BasicDBObject("$in", new Integer[]{4, 20})) .append("firmId", new BasicDBObject("$gt", 5000)) .append("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))); DBCursor cursor = collection.find(queryObject) .sort(new BasicDBObject("firmId", 1)).limit(10).skip(2);
并发:200
耗时:63187
单次耗时(server):119ms
Qps:316.52
3、 创建stationId, firmId复合引查询场景(200w集合,12个字段)
查询次数:2000
查询条件:多条件查询记录数
String key = "清泉" + r.nextInt(100); Pattern pattern = Pattern.compile(key); BasicDBObject queryObject = new BasicDBObject("stationId", new BasicDBObject("$in", new Integer[]{4, 20})) .append("firmId", new BasicDBObject("$gt", 5000)) .append("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))); long count = collection.count(queryObject);
并发:200
耗时:21887
单次耗时(client):280ms
Qps:91.38
有正则
4、 创建stationId, firmId复合引查询场景(200w集合,12个字段)
查询次数:20000
查询条件:多条件查询10条记录,并逐条获取记录
String key = "清泉" + r.nextInt(1000); Pattern pattern = Pattern.compile(key); BasicDBObject queryObject = new BasicDBObject("stationId", new BasicDBObject("$in", new Integer[]{20})) .append("firmId", new BasicDBObject("$gt", 5000)) .append ("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))) .append("firmName", pattern); DBCursor cursor = collection.find(queryObject).limit(10).skip(2);
并发:200
耗时:137673
单次耗时(server):225ms
Qps:145.27
5、 创建stationId, firmId复合引查询场景(200w集合,12个字段)
查询次数:20000
查询条件:多条件查询10条记录排序,并逐条获取记录
String key = "清泉" + r.nextInt(1000); Pattern pattern = Pattern.compile(key); BasicDBObject queryObject = new BasicDBObject("stationId", new BasicDBObject("$in", new Integer[]{4, 20})) .append("firmId", new BasicDBObject("$gt", 5000)) .append ("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))) .append("firmName", pattern); DBCursor cursor = collection.find(queryObject) .sort(new BasicDBObject("firmId", 1)).limit(10).skip(2);
并发:200
耗时:138673
单次耗时(server):230ms
Qps:144.22
6、 创建stationId, firmId复合引查询场景(200w集合,12个字段)
查询次数:2000
查询条件:多条件查询记录数
String key = "清泉" + r.nextInt(1000); Pattern pattern = Pattern.compile(key); BasicDBObject queryObject = new BasicDBObject("stationId", new BasicDBObject("$in", new Integer[]{4, 20})) .append("firmId", new BasicDBObject("$gt", 5000)) .append ("dealCount", new BasicDBObject("$gt", r.nextInt(1000000))) .append("firmName", pattern); long count = collection.count(queryObject);
并发:200
耗时:23155
单次耗时(client):330ms
Qps:86.37
MongoDB索引特点
1、 复合索引必须命中首字段,否则无法生效。后面的字段可以不按顺序命中。
2、 复合索引字段越多占用空间越大,但对查询性能影响不大(数组索引除外)。
3、 会根据sort字段选择索引,优先级超过复合索引中的非首字段。
4、 命中复合索引的情况下,数据量<10w的情况下,过滤非索引字段,效率也比较高。
5、 全文检索性能比较差,200w数据命中50w的情况下,全文检索需要10+s,正则需要1s。
MongoDB客户端配置,可以提出来做成spring注入,设置最大连接数什么的。
MongoClientOptions options = MongoClientOptions.builder().maxWaitTime(1000 * 60 * 2) .connectionsPerHost(500).build(); mongoClient = new MongoClient(Arrays.asList(new ServerAddress("10.205.68.57", 8700), new ServerAddress("10.205.68.15", 8700), new ServerAddress("10.205.69.13", 8700)), options); mongoClient.setReadPreference(ReadPreference.secondaryPreferred());
mongoDB调研_结论.docx为最终场景下的测试数据,分为有正则和无正则。
mongoDB调研_remote.docx为测试验证过程中的数据,有可能存在缓存等情况,不一定准确,功参考。
关于MongoDB 查询优化原则的大家了解吗?下文给大家介绍下,具体内容如下所示:
1.在查询条件、排序条件、统计条件的字段上选择创建索引,可以显著提高查询效率。
2.用$or时把匹配最多结果的条件放在最前面,用$and时把匹配最 少 结果的条件放在最前面。
3.使用limit()限定返回结果集的大小,减少数据库服务器的资源消耗,以及网络传输的数据量。
4.尽量少用$in,而是分解成一个一个的单一查询。尤其是在分片上,$in会让你的查询去每一个分片上查一次,如果实在要用的话,先在每个分片上建索引。
5.尽量不用模糊匹配查询,用其它精确匹配查询代替,比如$in、$nin。
6.查询量大、并发大的情况,通过前端加缓存解决。
7.能不用安全模式的操作就不用安全模式,这样客户端没必要等待数据库返回查询结果以及处理异常,快了一个数量级。
8.MongoDB的智能查询优化,判断粒度为query条件,而skip和limit都不在其判断之中,当分页查询最后几页时,先用order反向排序。
9.尽量减少跨分片查询,balance均衡次数少。
10.只查询要使用的字段,而不查询所有字段。
11.更新字段的值时,使用$inc比update效率高。
12.apped collections比普通collections的读写效率高。
13.server-side processing类似于SQL查询的存储过程,可以减少网络通讯的开销。
14.必要时使用hint()强制使用某个索引查询。
15.如果有自己的主键列,则使用自己的主键列作为id,这样可以节约空间,也不需要创建额外的所以。
16.使用explain,根据exlpain plan进行优化。
17.范围查询的时候尽量用$in、$nin代替。
18.查看数据库查询日志,具体分析的效率低的操作。
19.mongodb有一个数据库优化工具database profiler,能够检测数据库操作的性能。可以发现query或者write操作中执行效率低的,从而针对这些操作进行优化。
20.尽量把更多的操作放在客户端,当然这就是mongodb设计的理念之一。
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 雨林唱片《赏》新曲+精选集SACD版[ISO][2.3G]
- 罗大佑与OK男女合唱团.1995-再会吧!素兰【音乐工厂】【WAV+CUE】
- 草蜢.1993-宝贝对不起(国)【宝丽金】【WAV+CUE】
- 杨培安.2009-抒·情(EP)【擎天娱乐】【WAV+CUE】
- 周慧敏《EndlessDream》[WAV+CUE]
- 彭芳《纯色角3》2007[WAV+CUE]
- 江志丰2008-今生为你[豪记][WAV+CUE]
- 罗大佑1994《恋曲2000》音乐工厂[WAV+CUE][1G]
- 群星《一首歌一个故事》赵英俊某些作品重唱企划[FLAC分轨][1G]
- 群星《网易云英文歌曲播放量TOP100》[MP3][1G]
- 方大同.2024-梦想家TheDreamer【赋音乐】【FLAC分轨】
- 李慧珍.2007-爱死了【华谊兄弟】【WAV+CUE】
- 王大文.2019-国际太空站【环球】【FLAC分轨】
- 群星《2022超好听的十倍音质网络歌曲(163)》U盘音乐[WAV分轨][1.1G]
- 童丽《啼笑姻缘》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]