监控Linux服务器的工具、组件和程序网上有很多,但是一台服务器上会有很多进程同时运行,特别是做性能测试的时候,可能一台服务器上部署多个服务,如果只监控整个服务器的CPU和内存,当某个服务出现性能问题时,并不能有效准确的定位出(当然通过其他工具也可以实现),因此,很有必要只监控指定的进程。需求明确了,于是动手撸了一个性能监控脚本。
一、整体思路
1、为了方便的启动监控和停止监控,在想查看监控结果的时候随时查看监控结果,用flask开启了一个服务,通过发送get请求可以随时启停监控和查看监控结果。
2、针对控制是否监控cpu、内存、IO,开启多线程监控。
3、为了减少对其他组件的依赖,将监控结果写到日志中。
4、为了方便查看监控结果,直接将结果以html方式返回。
二、配置文件
config.py
IP = '127.0.0.1' PORT = '5555' LEVEL = 'INFO' # log level BACKUP_COUNT = 9 # log backup counter LOG_PATH = 'logs' # log path INTERVAL = 1 # interval, run command interval. SLEEPTIME = 3 # interval, when stopping monitor, polling to start monitor when satisfying condition. ERROR_TIMES = 5 # times, number of running command. When equal, automatically stopped monitor. IS_JVM_ALERT = True # Whether to alert when the frequency of Full GC is too high. IS_MONITOR_SYSTEM = True # Whether to monitor system's CPU and Memory. IS_MEM_ALERT = True # Whether to alert when memory is too low. Alert by sending email. MIN_MEM = 2 # Minxium memory, uint: G # 0: don't clear cache, 1: clear page caches, 2: clear dentries and inodes caches, 3: include 1 and 2; # echo 1 >/proc/sys/vm/drop_caches ECHO = 0 SMTP_SERVER = 'smtp.sina.com' # SMTP server SENDER_NAME = '张三' # sender name SENDER_EMAIL = 'zhangsan@qq.com' # sender's email PASSWORD = 'UjBWYVJFZE9RbFpIV1QwOVBUMDlQUT09' # email password, base64 encode. RECEIVER_NAME = 'baidu_all' # receiver name RECEIVER_EMAIL = ['zhangsan@qq.com', 'zhangsi@qq.com'] # receiver's email DISK = 'device1' # Which disk your application runs START_TIME = 'startTime.txt' # Store the time of start monitoring. FGC_TIMES = 'FullGC.txt' # Store the time of every FullGC time. # html HTML = '<html><body>{}</body><html>' ERROR = '<p style="color:red">{}</p>' HEADER = '<div id="header"><h2 align="center">Performance Monitor (pid={})</h2></div>' ANALYSIS = '<div id="container" style="width:730px; margin:0 auto">{}</div>'
IP和PORT:开启服务的服务器IP和端口,必须和所监控的服务在同一台服务器上;
BACKUP_COUNT:默认为9,即只保留最近9天监控结果;
INTERVAL:两次监控的时间间隔,默认为1s,主要用于cpu和内存监控,当同时监控多个端口或进程时,请将该值设小一点;
ERROR_TIMES:命令执行失败次数,当大于该次数时,则会自动停止监控;主要用于监控指定的进程,如果进程被杀掉,则必须自动停止监控,且必须手动触发再次开始监控;如果监控指定的端口,当端口的进程被杀掉后,也会停止监控,如果端口被重新启动,则自动开始监控;
IS_JVM_ALERT:仅针对java应用,如果频繁FullGC,则邮件提醒;一般性能测试,FullGC的频率不得小于3600秒;
IS_MONITOR_SYSTEM :是否监控系统总CPU使用率和剩余内存;
IS_MEM_ALERT:当系统剩余内存过低时,是否邮件提醒;
MIN_MEM:允许系统最小剩余内存,单位为G;
ECHO:当系统剩余内存过低时,是否释放缓存;0为不释放,1为释放页面缓存,2为释放dentries和inodes缓存,3为释放1和2;
DISK:磁盘号,如果监控IO,需要输入磁盘号,通过df -h 文件名查看当前文件挂在哪个磁盘下;
START_TIME:记录每次手动触发开始监控的时间;
FGC_TIMES:记录每次FullGC的时间,用于排查问题;
三、接口和服务
server.py
server = Flask(__name__) permon = PerMon() # 开启多线程 t = [threading.Thread(target=permon.write_cpu_mem, args=()), threading.Thread(target=permon.write_io, args=())] for i in range(len(t)): t[i].start() # 开始监控 # http://127.0.0.1:5555/runMonitor"external nofollow" href="http://127.0.0.1:5555/runMonitor">http://127.0.0.1:5555/runMonitor"external nofollow" href="http://127.0.0.1">http://127.0.0.1:
5555/plotMonitor"text-align: center">六、扩展函数
extern.py 有两个功能
1、端口转进程
try: result = os.popen(f'netstat -nlp|grep {port} |tr -s " "').readlines() res = [line.strip() for line in result if str(port) in line] p = res[0].split(' ') pp = p[3].split(':')[-1] if str(port) == pp: pid = p[-1].split('/')[0] except Exception as err: logger.logger.error(err)2、查找包含监控结果的日志
整体思路:
(1)根据输入的开始时间和结束时间,查找包含这段时间的所有日志文件;
(2)根据查找出来的日志文件,找出包含监控结果的所有日志;
(3)画图的时候遍历找出的所有日志。
补充
1、为了方便查看最近一次开始监控的时间,会将每一次开始监控的时间写到startTime.txt文件中;
2、为了方便排查java应用可能出现的问题,将每一次Full GC的时间写到FullGC.txt文件中。
项目地址:https://github.com/leeyoshinari/performance_monitor
总结
以上所述是小编给大家介绍的基于python的Linux系统指定进程性能监控,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]