前言:随之vue3.0beta版本的发布,vue3.0正式版本相信不久就会与我们相遇。尤玉溪在直播中也说了vue3.0的新特性typescript强烈支持,proxy响应式原理,重新虚拟dom,优化diff算法性能提升等等。小编在这里仔细研究了vue3.0beta版本diff算法的源码,并希望把其中的细节和奥妙和大家一起分享。
首先我们来思考一些大中厂面试中,很容易问到的问题:
1 什么时候用到diff算法,diff算法作用域在哪里?
2 diff算法是怎么运作的,到底有什么作用?
3 在v-for 循环列表 key 的作用是什么
4 用索引index做key真的有用? 到底用什么做key才是最佳方案。
如果遇到这些问题,大家是怎么回答的呢?我相信当你读完这篇文章,这些问题也会迎刃而解。
一 什么时候用到了diff算法,diff算法作用域?
1.1diff算法的作用域
patch概念引入
在vue update过程中在遍历子代vnode的过程中,会用不同的patch方法来patch新老vnode,如果找到对应的 newVnode 和 oldVnode,就可以复用利用里面的真实dom节点。避免了重复创建元素带来的性能开销。毕竟浏览器创造真实的dom,操纵真实的dom,性能代价是昂贵的。
patch过程中,如果面对当前vnode存在有很多chidren的情况,那么需要分别遍历patch新的children Vnode和老的 children vnode。
存在chidren的vnode类型
首先思考一下什么类型的vnode会存在children。
①element元素类型vnode
第一中情况就是element类型vnode 会存在 children vode,此时的三个span标签就是chidren vnode情况
<div> <span> 苹果"htmlcode"><template> <span> 苹果"htmlcode"><Fragment> <span> 苹果"htmlcode">if (patchFlag > 0) { if (patchFlag & PatchFlags.KEYED_FRAGMENT) { /* 对于存在key的情况用于diff算法 */ patchKeyedChildren( c1 as VNode[], c2 as VNodeArrayChildren, container, anchor, parentComponent, parentSuspense, isSVG, optimized ) return } else if (patchFlag & PatchFlags.UNKEYED_FRAGMENT) { /* 对于不存在key的情况,直接patch */ patchUnkeyedChildren( c1 as VNode[], c2 as VNodeArrayChildren, container, anchor, parentComponent, parentSuspense, isSVG, optimized ) return } }patchChildren根据是否存在key进行真正的diff或者直接patch。 既然diff算法存在patchChildren方法中,而patchChildren方法用在Fragment类型和element类型的vnode中,这样也就解释了diff算法的作用域是什么。 1.3 diff算法作用?
通过前言我们知道,存在这children的情况的vnode,需要通过patchChildren遍历children依次进行patch操作,如果在patch期间,再发现存在vnode情况,那么会递归的方式依次向下patch,那么找到与新的vnode对应的vnode显的如此重要。
我们用两幅图来向大家展示vnode变化。
如上两幅图表示在一次更新中新老dom树变化情况。
假设不存在diff算法,依次按照先后顺序patch会发生什么
如果 不存在diff算法 ,而是直接patchchildren 就会出现如下图的逻辑。
第一次patchChidren
第二次patchChidren
第三次patchChidren‘
第四次patchChidren
如果没有用到diff算法,而是依次patch虚拟dom树,那么如上稍微 修改dom顺序 ,就会在patch过程中没有一对正确的新老vnode,所以老vnode的节点没有一个可以复用,这样就需要重新创造新的节点,浪费了性能开销,这显然不是我们需要的。
那么diff算法的作用就来了。
diff作用就是在patch子vnode过程中,找到与新vnode对应的老vnode,复用真实的dom节点,避免不必要的性能开销
二 diff算法具体做了什么(重点)?
在正式讲diff算法之前,在patchChildren的过程中,存在 patchKeyedChildren
patchUnkeyedChildren
patchKeyedChildren 是正式的开启diff的流程,那么patchUnkeyedChildren的作用是什么呢? 我们来看看针对没有key的情况patchUnkeyedChildren会做什么。
c1 = c1 || EMPTY_ARR c2 = c2 || EMPTY_ARR const oldLength = c1.length const newLength = c2.length const commonLength = Math.min(oldLength, newLength) let i for (i = 0; i < commonLength; i++) { /* 依次遍历新老vnode进行patch */ const nextChild = (c2[i] = optimized "htmlcode">/* c1 老的vnode c2 新的vnode */ let i = 0 /* 记录索引 */ const l2 = c2.length /* 新vnode的数量 */ let e1 = c1.length - 1 /* 老vnode 最后一个节点的索引 */ let e2 = l2 - 1 /* 新节点最后一个节点的索引 */①第一步从头开始向尾寻找
(a b) c
(a b) d e
/* 从头对比找到有相同的节点 patch ,发现不同,立即跳出*/ while (i <= e1 && i <= e2) { const n1 = c1[i] const n2 = (c2[i] = optimized "text-align: center">isSameVNodeType
export function isSameVNodeType(n1: VNode, n2: VNode): boolean { return n1.type === n2.type && n1.key === n2.key }isSameVNodeType 作用就是判断当前vnode类型 和 vnode的 key是否相等
②第二步从尾开始同前diff
a (b c)
d e (b c)
/* 如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环 */ while (i <= e1 && i <= e2) { const n1 = c1[e1] const n2 = (c2[e2] = optimized "text-align: center">③④主要针对新增和删除元素的情况,前提是元素没有发生移动, 如果有元素发生移动就要走⑤逻辑。 ③ 如果老节点是否全部patch,新节点没有被patch完,创建新的vnode
(a b)
(a b) c
i = 2, e1 = 1, e2 = 2
(a b)
c (a b)
i = 0, e1 = -1, e2 = 0
/* 如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode ) */ if (i > e1) { if (i <= e2) { const nextPos = e2 + 1 const anchor = nextPos < l2 "text-align: center">④ 如果新节点全部被patch,老节点有剩余,那么卸载所有老节点
i > e2
(a b) c
(a b)
i = 2, e1 = 2, e2 = 1
a (b c)
(b c)
i = 0, e1 = 0, e2 = -1
else if (i > e2) { while (i <= e1) { unmount(c1[i], parentComponent, parentSuspense, true) i++ } }对于老的节点大于新的节点的情况 ,对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )
具体逻辑如图所示
⑤ 不确定的元素 ( 这种情况说明没有patch完相同的vnode ),我们可以接着①②的逻辑继续往下看 diff核心
在①②情况下没有遍历完的节点如下图所示。
剩下的节点。
const s1 = i //第一步遍历到的index const s2 = i const keyToNewIndexMap: Map<string | number, number> = new Map() /* 把没有比较过的新的vnode节点,通过map保存 */ for (i = s2; i <= e2; i++) { if (nextChild.key != null) { keyToNewIndexMap.set(nextChild.key, i) } } let j let patched = 0 const toBePatched = e2 - s2 + 1 /* 没有经过 path 新的节点的数量 */ let moved = false /* 证明是否 */ let maxNewIndexSoFar = 0 const newIndexToOldIndexMap = new Array(toBePatched) for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0 /* 建立一个数组,每个子元素都是0 [ 0, 0, 0, 0, 0, 0, ] */遍历所有新节点把索引和对应的key,存入map keyToNewIndexMap中
keyToNewIndexMap存放 key -> index 的map
D : 2
E : 3
C : 4
I : 5
接下来声明一个新的指针 j ,记录剩下新的节点的索引。
patched,记录在第⑤步patched新节点过的数量
toBePatched记录⑤步之前,没有经过patched 新的节点的数量。
moved代表是否发生过移动,咱们的demo是已经发生过移动的。
newIndexToOldIndexMap用来存放新节点索引和老节点索引的数组。
newIndexToOldIndexMap 数组的index是新vnode的索引 , value是老vnode的索引。
接下来
for (i = s1; i <= e1; i++) { /* 开始遍历老节点 */ const prevChild = c1[i] if (patched >= toBePatched) { /* 已经patch数量大于等于, */ /* ① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点 */ unmount(prevChild, parentComponent, parentSuspense, true) continue } let newIndex /* ② 如果,老节点的key存在 ,通过key找到对应的index */ if (prevChild.key != null) { newIndex = keyToNewIndexMap.get(prevChild.key) } else { /* ③ 如果,老节点的key不存在 */ for (j = s2; j <= e2; j++) { /* 遍历剩下的所有新节点 */ if ( newIndexToOldIndexMap[j - s2] === 0 && /* newIndexToOldIndexMap[j - s2] === 0 新节点没有被patch */ isSameVNodeType(prevChild, c2[j] as VNode) ) { /* 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex */ newIndex = j break } } } if (newIndex === undefined) { /* ①没有找到与老节点对应的新节点,删除当前节点,卸载所有的节点 */ unmount(prevChild, parentComponent, parentSuspense, true) } else { /* ②把老节点的索引,记录在存放新节点的数组中, */ newIndexToOldIndexMap[newIndex - s2] = i + 1 if (newIndex >= maxNewIndexSoFar) { maxNewIndexSoFar = newIndex } else { /* 证明有节点已经移动了 */ moved = true } /* 找到新的节点进行patch节点 */ patch( prevChild, c2[newIndex] as VNode, container, null, parentComponent, parentSuspense, isSVG, optimized ) patched++ } }这段代码算是diff算法的核心。
第一步: 通过老节点的key找到对应新节点的index:开始遍历老的节点,判断有没有key, 如果存在key通过新节点的keyToNewIndexMap找到与新节点index,如果不存在key那么会遍历剩下来的新节点试图找到对应index。 第二步:如果存在index证明有对应的老节点,那么直接复用老节点进行patch,没有找到与老节点对应的新节点,删除当前老节点。 第三步:newIndexToOldIndexMap找到对应新老节点关系。
到这里,我们patch了一遍,把所有的老vnode都patch了一遍。
如图所示
但是接下来的问题。
1 虽然已经patch过所有的老节点。可以对于已经发生移动的节点,要怎么真正移动dom元素。
2 对于新增的节点,(图中节点I)并没有处理,应该怎么处理。
/*移动老节点创建新节点*/ /* 根据最长稳定序列移动相对应的节点 */ const increasingNewIndexSequence = moved "color: #ff0000">总结经过上述我们大致知道了diff算法的流程
1 从头对比找到有相同的节点 patch ,发现不同,立即跳出。
2如果第一步没有patch完,立即,从后往前开始patch ,如果发现不同立即跳出循环。 3如果新的节点大于老的节点数 ,对于剩下的节点全部以新的vnode处理( 这种情况说明已经patch完相同的vnode )。 4 对于老的节点大于新的节点的情况 , 对于超出的节点全部卸载 ( 这种情况说明已经patch完相同的vnode )。 5不确定的元素( 这种情况说明没有patch完相同的vnode ) 与 3 ,4对立关系。
1 把没有比较过的新的vnode节点,通过map保存
记录已经patch的新节点的数量 patched
没有经过 path 新的节点的数量 toBePatched
建立一个数组newIndexToOldIndexMap,每个子元素都是[ 0, 0, 0, 0, 0, 0, ] 里面的数字记录老节点的索引 ,数组索引就是新节点的索引
开始遍历老节点
① 如果 toBePatched新的节点数量为0 ,那么统一卸载老的节点
② 如果,老节点的key存在 ,通过key找到对应的index
③ 如果,老节点的key不存在
1 遍历剩下的所有新节点
2 如果找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex
④ 没有找到与老节点对应的新节点,卸载当前老节点。
⑤ 如果找到与老节点对应的新节点,把老节点的索引,记录在存放新节点的数组中,
1 如果节点发生移动 记录已经移动了
2 patch新老节点 找到新的节点进行patch节点
遍历结束 如果发生移动
① 根据 newIndexToOldIndexMap 新老节点索引列表找到最长稳定序列
② 对于 newIndexToOldIndexMap -item =0 证明不存在老节点 ,从新形成新的vnode
③ 对于发生移动的节点进行移动处理。
三 key的作用,如何正确key。
1key的作用
在我们上述diff算法中,通过isSameVNodeType方法判断,来判断key是否相等判断新老节点。
那么由此我们可以总结出?
在v-for循环中,key的作用是:通过判断newVnode和OldVnode的key是否相等,从而复用与新节点对应的老节点,节约性能的开销。
2如何正确使用key
①错误用法 1:用index做key。
用index做key的效果实际和没有用diff算法是一样的,为什么这么说呢,下面我就用一幅图来说明:
如果所示当我们用index作为key的时候,无论我们怎么样移动删除节点,到了diff算法中都会从头到尾依次patch(图中: 所有节点均未有效的复用 )
②错误用法2 :用index拼接其他值作为key。
当已用index拼接其他值作为索引的时候,因为每一个节点都找不到对应的key,导致所有的节点都不能复用,所有的新vnode都需要重新创建。都需要重新create
如图所示。
③正确用法 :用唯一值id做key(我们可以用前后端交互的数据源的id为key)。
如图所示。每一个节点都做到了复用。起到了diff算法的真正作用。
四 总结
我们在上面,已经把刚开始的问题统统解决了,最后用一张思维脑图来从新整理一下整个流程。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com白云城资源网 Copyright www.dyhadc.com暂无“详解vue3.0 diff算法的使用(超详细)”评论...RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月04日2025年01月04日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]