前言

在大前端的趋势下,前端er也要懂点数据加密相关的知识才行,加密算法的实现和原理我们可以不用深究,毕竟加密是一门高深的学科,但是基本的加密方式和编码还是要掌握的,毕竟没吃过猪肉,猪跑还是见过的嘛。

我对常见的几种加密和签名的算法做个归纳,同时附上 nodejs 的编码实现。

加密算法

为了保证数据的安全性和防篡改,很多数据在传输中都进行了加密。举个场景的栗子,最近很多网站都升级到 https 协议, https 协议就是使用了非对称加密和hash签名,还有 github 使用的 ssh ,也是非对称加密。还有大部分登录时密码采用的 MD5 加密等等。

加密可分为三大类,对称加密和非对称加密,还有摘要算法,我们一一展开。

对称加密

引用百科的描述:

采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。

对称加密很好理解,就好比我把我家的钥匙给你,你要来我家,直接用这把钥匙开门就行。

nodejs中各种加密算法的实现详解

对称加密目前主流的有 AES 和 DES , AES 是新一代的标准,速度快,安全级别更高。

AES

AES的加密模式有五种:CBC、ECB、CTR、OCF、CFB

  1. ECB:电子密本方式,需要一个密钥即可,特点是简单,利于并行计算。
  2. CBC:密文分组链接方式,除了需要一个密钥之外,还需要一个向量,向量的作用也是用于数据的加密,所以这个的安全性要好于 ECB
  3. CTR、OCF、CFB:具体算法的实现方式不一样,优缺点也各不相同,而这几个都同 CBC 一样,都需要密钥和向量。

AES 有三种长度 128位、192位、256位,这三种的区别,主要来自于密钥的长度,16字节密钥=128位,24字节密钥=192位,32字节密钥=256位。如下表格:

长度 密钥长度 向量长度 128位 16 16 192位 24 16 256位 32 16

DES

加密默认与 AES 相同,也有五种模式,除了 ECB 只需要密钥,其他模式需要密钥和向量。

与 AES 不同的是, DES 的密钥长度只有8字节,向量也是8字节。

编码实现

在 nodejs 中的实现

/**
 * @description 
 * 对称加密
 * @param {*} data 加密数据
 * @param {*} algorithm 加密算法
 * @param {*} key 密钥
 * @param {*} iv 向量
 * @returns
 */
function cipherivEncrypt(data, algorithm, key, iv) {
 const cipheriv = crypto.createCipheriv(algorithm, key, iv)
 let encrypted = cipheriv.update(data, 'utf8', 'hex');
 encrypted += cipheriv.final('hex');
 return encrypted
}

/**
 * @description
 * 对称解密
 * @param {*} data 解密数据
 * @param {*} algorithm 解密算法
 * @param {*} key 密钥
 * @param {*} iv 向量
 * @returns
 */
function cipherivDecrypt(data, algorithm, key, iv) {
 const decipher = crypto.createDecipheriv(algorithm, key, iv);
 let decrypted = decipher.update(data, 'hex', 'utf8');
 decrypted += decipher.final('utf8');
 return decrypted
}

使用官方提供 crypto 库来实现加解密,上面的代码中加密后输出的是 16 进制的字符串,大家可以根据具体情况换成其他格式的数据。

调用方式如下

// AES对称加解密
const str = 'xiaoliye';
const key = 'aaaaaaaaaaaaaaaaaaaaaaaa'; // 24
const iv = 'aaaaaaaaaaaaaaaaaaaaaaaa'; // 24
const cipherAesText = cipherivEncrypt(str, 'aes-192-cfb', key,iv)
const resultText = cipherivDecrypt(cipherAesText, 'aes-192-cfb', key,iv)
console.log(resultText === str) // true
// DES对称加解密
const str = 'xiaoliye';
const key = 'aaaaaaaa'; //8
const iv = 'aaaaaaaa'; //8
const cipherAesText = cipherivEncrypt(str, 'des-cfb', key,iv)
const resultText = cipherivDecrypt(cipherAesText, 'des-cfb', key,iv)
console.log(resultText === str) / true

非对称加密

非对称加密,有两把钥匙,公钥和私钥,如下图:

nodejs中各种加密算法的实现详解

公钥是可以公开对外,私钥就是自个的,不可泄露。因为有两个密钥,非对称加密这个名字就是这么由来的。

发送方用接收方公开对外的公钥进行加密,接收方收到数据后,用私钥进行解密,业务处理完后,用私钥给需要回传的数据加密,收到数据的一方在用公钥解密。

这个过程就是非对称加解密,简单理解就是公钥加密的数据,用私钥解密;私钥加密的数据,用公钥解密。

非对称加密与对称加密相比,安全性要高很多。对于对称加密,密钥钥匙被某一方不小心泄露了,那秘文就有可能被破解和篡改。而非对称加密,公钥随意流通,只要颁发密钥的一方好好把私钥保管好,安全性是妥妥的。

编码实现

我们来看 node 中的编码实现,还是使用官方提供的 crypto 库

  • 加解密函数接收的数据是 Buffer 类型,(关于 Buffer 的介绍,不了解的朋友可以看下这篇二进制与Buffer),所以需要约定好接收和输出的数据类型。
  • 参数 padding 是填充方式,有这么几种 crypto.constants.RSA_NO_PADDING, crypto.constants.RSA_PKCS1_PADDING, crypto.constants.RSA_PKCS1_OAEP_PADDING,因为没有深入研究过,就不展开啦,不过有一点,加密和解密的填充方式必须是要一致的。
const constants = require('constants')
const crypto = require('crypto')

/**
 * @description
 * 公钥加密数据
 * @param {*} data 待加密数据
 * @param {*} publicKey 公钥
 * @param {*} inputEncoding 加密数据类型
 * @param {*} outputEncoding 输出的数据类型
 * @param {*} padding 填充方式
 * @returns
 */
function publicEncrypt(data, publicKey, inputEncoding, outputEncoding, padding) {
 const encryptText = crypto.publicEncrypt({
  key: publicKey,
  padding: padding || constants.RSA_PKCS1_PADDING
 }, Buffer.from(data, inputEncoding));

 return encryptText.toString(outputEncoding);
}

/**
 * @description
 * 公钥解密数据
 * @param {*} data 待解密数据
 * @param {*} publicKey 公钥
 * @param {*} inputEncoding 解密数据类型
 * @param {*} outputEncoding 输出的数据类型
 * @param {*} padding 填充方式
 * @returns
 */
function publicDecrypt(data, publicKey, inputEncoding, outputEncoding, padding) {
 let decryptText = '';
 const decryptText = crypto.publicDecrypt({
  key: publicKey,
  padding: padding || constants.RSA_PKCS1_PADDING
 }, Buffer.from(data, inputEncoding));

 return decryptText.toString(outputEncoding);
}

/**
 * @description
 * 私钥加密数据
 * @param {*} data 待加密数据
 * @param {*} privateKey 私钥
 * @param {*} inputEncoding 加密数据类型
 * @param {*} outputEncoding 输出的数据类型
 * @param {*} padding 填充方式
 * @returns
 */
function privateEncrypt(data, privateKey, inputEncoding, outputEncoding, padding) {
 const encryptText = crypto.privateEncrypt({
  key: privateKey,
  padding: padding || constants.RSA_PKCS1_PADDING
 }, Buffer.from(data, inputEncoding));

 return encryptText.toString(outputEncoding);
}

/**
 * @description
 * 私钥解密数据
 * @param {*} data 待解密数据
 * @param {*} privateKey 私钥
 * @param {*} inputEncoding 解密数据类型
 * @param {*} outputEncoding 输出的数据类型
 * @param {*} padding 填充方式
 * @returns
 */
function privateDecrypt(data, privateKey, inputEncoding, outputEncoding, padding) {
 const decryptText = crypto.privateDecrypt({
  key: privateKey,
  padding: padding || constants.RSA_PKCS1_PADDING
 }, Buffer.from(data, inputEncoding));
 return decryptText.toString(outputEncoding);
}

有四个函数,分别是公钥的加解密和私钥的加解密,我们看下如何使用,示例中是我自己生成的密钥对,大家可以自行替换

const rsaPublicKey = `-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCncWDMXEToSxtGQCmWY2ywl5CQ
tb81PXYZch4v5M8MNUZPpcmf+VDXQbuWqqTqV/tY7rLviu/BAkFbX9NiFCapF5lP
siVwSGWJQwq0S/++RCwB6yFVEzOKL25jANRBVNwmSOzojveCStYPcEs5Q829ld68
9TzluDDqUS69dTHGkQIDAQAB
-----END PUBLIC KEY-----`

const rsaPrivateKey = `-----BEGIN PRIVATE KEY-----
MIICdwIBADANBgkqhkiG9w0BAQEFAASCAmEwggJdAgEAAoGBAKdxYMxcROhLG0ZA
KZZjbLCXkJC1vzU9dhlyHi/kzww1Rk+lyZ/5UNdBu5aqpOpX+1jusu+K78ECQVtf
02IUJqkXmU+yJXBIZYlDCrRL/75ELAHrIVUTM4ovbmMA1EFU3CZI7OiO94JK1g9w
SzlDzb2V3rz1POW4MOpRLr11McaRAgMBAAECgYEAhNa8/cQh4sxbKgOTOr1MKFlG
Fpgpxroo7I0Nh9+Vp1DIpD2Z1PF9ghijEyf0R/pe7LIKgWIPTWdVpIFEeSYVeH43
FLr3zwR9oXzwG7RQTSN4d/Xcvg+24ZxCrvDfn7qDIlXh0jOS0wCvna1or7xgPcOu
XG8J3BNbBdUixM0lk0ECQQDR4SCelWn0BY21jsFobX+pGqKOsj+tuvU4Cz47Gmev
qvq2suYXwLemkP7EqRu8iNso/IzvrdsuJDG76dzwC4D5AkEAzDz2cDrKOVmqYw7s
luOQFHl1TzmY7Umpd9YbZ5iXn0eCjIn1/e1risRF5+IeSpB84OVltUzj4cVDCbFd
9S1wWQJAIeKcFp5+9cPzxi1fMpIDO3Uua6WBvHXj44GFMZuow+byBY9KsOkPfZgJ
Wg0Hil/6KlrkEkpaic+ULAetASCKWQJAdMh/Gdlj/LsaxJ2qBvWEU1DIFU8X9Mbk
ElPpQ6lrOXaIXZgdgt8ZWTW1y0vuijBoV6iUKcEXpOdI1+gFk8YxsQJBAJsGJClf
E1mE6CZgegM82428g4osZznVXBO/QtrQsA78S1xo8bo4qwVm0jQBcto65gwlfeeB
Xm7MiIvNVBqzTVs=
-----END PRIVATE KEY-----
`

const str = 'xiaoliye'
const cipherText = publicEncrypt(str, rsaPublicKey, 'utf8', 'hex') // 公钥加密
const decryptText = privateDecrypt(cipherText, rsaPrivateKey, 'hex', 'utf8') // 私钥解密
console.log(str === decryptText) // true

const cipherTextPrivate = privateEncrypt(str,rsaPrivateKey,'utf8', 'hex') // 私钥加密
const decryptTextPublic = publicDecrypt(cipherTextPrivate,rsaPublicKey, 'hex', 'utf8') // 公钥解密
console.log(str === decryptTextPublic) // true

密钥生成方式

网上有很多工具可以一键生成配对的公钥和私钥,淘宝、微信都有提供相关工具,或者使用 OpenSSL 生成也可以。

摘要算法(HASH)

把任意长度的输入,根据算法生成一串固定长度的伪随机数,这一算法就是摘要算法,它有这么几个特点

  1. 不需要密钥,加密出来的数据无法被解密,具有不可逆性。
  2. 生成的摘要长度是固定的,与输入无关。
  3. 相同的输入,使用相同的实现,生成的摘要一定相同;不同的输入,生成的摘要是大相径庭的,即,不会发生碰撞。

根据这些特点,摘要算法通常用于生成签名,用来验证数据的完整性。

还有用户密码的存储,如今密码的存储主流的方式,就是使用摘要算法生成唯一的标识,为了保证安全性,通常在生成摘要后再加上一串随机数(加盐salt),在来hash一次。

目前主流的实现有 MD5 和 SHA-2 , MD5 生成的摘要是 32 字节, sha256 生成的摘要是 64 字节。

编码实现

仍然是使用官方提供的 crypto 库

/**
 * @description
 * md5
 * @param {*} data
 * @returns
 */
function md5(data){
 const hash = crypto.createHash('md5');
 return hash.update(data).digest('hex');
}

/**
 * @description
 * sha256
 * @param {*} data
 * @returns
 */
function sha256(data){
 const hash = crypto.createHash('sha256');
 return hash.update(data).digest('hex');
}

console.log(md5('asdf')) // 912ec803b2ce49e4a541068d495ab570
console.log(sha256('asdf')) // f0e4c2f76c58916ec258f246851bea091d14d4247a2fc3e18694461b1816e13b

小结

涉及加密的活一般是后台开发干的,但前端靓仔懂点加密,会让自己酷酷的~

小伙伴们还有遇到啥其他加密的方式,欢迎一起交流啊~

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

标签:
nodejs,加密算法,单向,nodejs,加密算法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
白云城资源网 Copyright www.dyhadc.com

评论“nodejs中各种加密算法的实现详解”

暂无“nodejs中各种加密算法的实现详解”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。